首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several β-amidodehydroaminobutyric acid derivatives were prepared from N,C-diprotected β-bromodehydroaminobutyric acids and amides by a copper catalyzed C–N coupling reaction. The best reaction conditions include the use of a catalytic amount of CuI, N,N′-dimethylethylenediamine as ligand and K2CO3 as base in toluene at 110 °C. The stereochemistry of the products was determined using NOE difference experiments and the results obtained are in agreement with an E-stereochemistry. Thus, the stereochemistry is maintained in the case of the E-isomers of β-bromodehydroaminobutyric acid derivatives, but when the Z-isomers were used as substrates the reaction proceeds with inversion of configuration. The use of β-bromodehydrodipeptides as substrates was also tested. It was found that the reaction outcome depend on the stereochemistry of the β-bromodehydrodipeptide and on the nature of the first amino acid residue. The products isolated were the β-amidodehydrodipeptide derivatives and/or the corresponding dihydropyrazines. The same catalytic system (CuI/N,N′-dimethylethylene diamine) was used in the C–O coupling reactions between a tyrosine derivative and aryl bromides. The new O-aryltyrosine derivatives were isolated in moderate to good yields. The photophysical properties of two of these compounds were studied in four solvents of different polarity. The results show that these compounds after deprotection can be used as fluorescence markers.  相似文献   

2.
The relative stereochemistry at C13 and the absolute configuration of salvic acid, a constituent of the leaves of Eupatorium salvia, were established as the 13-(R)-ent-labdane 1. The results follow from vibrational circular dichroism measurements of the derived O-methyl ether methyl ester 3 which were compared to DFT B3LYP/DGDZVP calculated spectra. The relative stereochemistry of salvic acid at C13 was independently verified by single crystal X-ray diffraction measurements of 1, and of its derived diol 4.  相似文献   

3.
The application of gas-liquid chromatography-mass spectrometric (g.l.c.-m.s.) analysis to a number of sialic acid-containing polysaccharides of meningococcal origin has been studied. Methylation of these polysaccharides by the Hakomori conditions resulted in both O- and N-methylation. Methanolysis of the methylated polysaccharides from serogroup C [(2→9)-linked], colominic acid [(2→8)-linked], and serogroups Y and W-135 [both (1→4)-linked], yielded the respective 4,7,8,4,7,9-, and 7,8,9-tri-O-methyl derivatives of methyl N-acetyl-N-methyl-β-D-neuraminate methyl glycoside. As model compounds, methyl N-acetyl-4,7,8,9-tetra-O-methyl-α-D-neuraminate methyl glycoside and its N-methyl derivative were also synthesized. All of the methylated derivatives could be identified on the basis of their typical fragmentation-patterns, indicating that this method is applicable to the determination of the position of linkages to sialic acid residues in biopolymers.  相似文献   

4.
Primary structural requirements both for N- and O-glycosylation have been studied using a series of synthetic peptides and a membrane fraction from Saccharomyces cerevisiae. N-Glycosylation: the tripeptide sequence Asn-Xaa-Thr/Ser was found to be necessary for the transfer of saccharide units from oligosaccharide-lipid to asparagine. Substitution of asparagine by aspartic acid or glutamine, or replacement of threonine by valine in the hexapeptide Tyr-Asn-Leu-Thr-Ser-Val prevents its glycosylation. Also, a proline residue in the position of Xaa makes the peptide unable to function as an acceptor. Transfer onto asparagine occurs only efficiently if both the α-amino group of asparagine and the α-carboxyl moiety of the hydroxy amino acid are blocked. Yield of glycosylation improves with increasing peptide chain length. With regard to the glycosyl donor dolichyl diphosphate-bound GlcNAc2Man9Glc3 is the preferred substrate. Non-glucosylated glycolipid Dol-PP-GlcNAc2Man9 is a poor donor, whereas smaller precursors Dol-PP-GlcNAc2 and Dol-PP-GlcNAc2Man1 allow reasonable transfer. O-Glycosylation: no marker sequence can be derived for the formation of an O-glycosidic linkage via Dol-P-Man. Introduction of a proline residue in vicinity to the hydroxy amino acid leads to a significant improvement of glycosyl transfer. It is postulated that accessibility of potential O-glycosylation sites rather than a specific sequence may be a prerequisite for O-glycosylation.  相似文献   

5.
The novel sialic acid 4-O-acetyl-9-O-lactyl-N-acetylneuraminic acid has been identified as a constituent of horse submandibular gland glycoproteins in addition to the already know equine sialic acids, N-acetylneuraminic acid, 4-O-acetyl-N-acetylneuraminic acid, 9-O-acetyl-N-acetylneuraminic acid, 4,9-di-O-acetyl-N-acetylneuraminic acid, N-glycolylneuraminic acid, 4-O-acetyl-N-glycolylneuraminic acidand 9-O-acetyl-N-glycolylneuraminic acid. The structure has been established by combined gas-liquid chromatography-mass spectrometry.  相似文献   

6.
Injections of aromatic amines (β-naphthylamine, benzidine, O-dianisidine or N-2-fluorenyl acetamide), tryptophan metabolites (3-hydroxyanthranilic acid, xanthurenic acid or LD-kynurenine sulphate), oestrone, and nicotine, which are known bladder carcinogens in man and some other mammals induced sexual reproduction (encystation) in Opalina sudafricana when injected into its host Bufo regularis. This may be used as a new biological assay for screening substances which induce bladder cancer in man and some other mammals. It is speculated that the metabolites of the injected carcinogenic substances used in this work are excreted in the urine of the host, hydrolysed by the hydrolytic enzymes and become carcinogenic. These carcinogenic metabolites reach the parasites in the rectum of the toads and induce them to divide mitotically to form small forms which eventually encyst. It is speculated that the presence of cysts in the rectum of the injected toads is indicative that a carcinogenic effect took place in the parasites. Oestrone is the only carcinogenic substance which induced encystation in the opalinids in vitro. Urine of toads injected with β-naphthylamine, benzidine, O-dianisidine, N-2-fluorenyl acetamide, 3-hydroxyanthranilic acid, xanthurenic acid, DL-kynurenine sulphate, oestrone and nicotine induced cyst formation in the parasites in vitro.  相似文献   

7.
The mass spectra of the O-trimethylsilylated trifluoro-dideuteroethyl polyamino alcohols, produced by LiAlD4-reduction and O-trimethylsilylation of N-trifluororacetyl oligopeptide methyl esters, are evaluated. Characteristic mass spectra of derivatives are shown which are derived from peptides containing all protein amino acids including Arg, His, Trp, Gln, Asn and carboxyl terminal amides as well as modified Cys-residues. The mass spectra of these derivatives can be easily interpreted in terms of the amino acid sequence of the original peptides since they contain abundant and intensity-balanced sequence-determining ions.  相似文献   

8.
Numerous cellular processes are regulated by the reversible addition of either phosphate or O-linked β-N-acetylglucosamine (O-GlcNAc) to nuclear and cytoplasmic proteins. Although sensitive methods exist for the enrichment and identification of protein phosphorylation sites, those for the enrichment of O-GlcNAc-containing peptides are lacking. Reported here is highly efficient methodology for the enrichment and characterization of O-GlcNAc sites from complex samples. In this method, O-GlcNAc-modified peptides are tagged with a novel biotinylation reagent, enriched by affinity chromatography, released from the solid support by photochemical cleavage, and analyzed by electron transfer dissociation mass spectrometry. Using this strategy, eight O-GlcNAc sites were mapped from a tau-enriched sample from rat brain. Sites of GlcNAcylation were characterized on important neuronal proteins such as tau, synucleins, and methyl CpG-binding protein 2.Numerous cytoplasmic and nuclear proteins are post-translationally modified with O-linked β-N-acetylglucosamine (O-GlcNAc).1 GlcNAcylation is involved in almost all aspects of cellular metabolism (1) and is highly dependent on the nutrient status of the cell (2). The O-GlcNAc modification rivals phosphorylation in both abundance and protein distribution. Recent studies indicate that signaling pathways can be regulated by the interplay of these two modifications at the same or proximal sites on numerous protein substrates (3).Current understanding of the functions of O-GlcNAc and of the function of O-GlcNAcylation and its relationship to phosphorylation is severely hampered by the difficulties in detecting this labile monosaccharide modification. Problems associated with the identification of O-GlcNAc sites include the following. (a) O-GlcNAc is quickly removed by hydrolases during cell lysis. (b) Like phosphorylation, O-GlcNAc is usually present in less than stoichiometric amounts at given sites on protein substrates. (c) O-GlcNAc is readily lost as an oxonium ion during conventional peptide sequence analysis by collision-activated dissociation (CAD) (supplemental Fig. 1). (d) Modified and unmodified forms of the peptide often co-elute during reverse phase HPLC (supplemental Fig. 2), and the preferential ionization of the unmodified peptide suppresses the signal observed for the corresponding O-GlcNAc-modified peptide (supplemental Fig. 2, b and c).Several attempts have been made to enrich samples for O-GlcNAc-modified proteins and peptides. Immunoaffinity purification of O-GlcNAc-modified peptides with an antibody (CTD 110.6) has been largely unsuccessful because of low binding avidity (4). Long, wheat germ agglutinin lectin columns (∼39 ft) provide some enrichment but also bind strongly to complex glycans (5). A mutant galactosyltransferase (GalT1) has been used to label GlcNAcylated proteins with a ketone-containing galactose analog (6). Following proteolytic digestion, O-GlcNAc-modified peptides were biotinylated with hydrazine chemistry, isolated on a column packed with avidin beads, eluted with free biotin, and sequenced by ETD mass spectrometry. Failure to elute peptides with high efficiency from the avidin column and an inability to direct the fragmentation to the peptide backbone limit the usefulness of this approach. Reported here is an enrichment methodology that (a) is highly specific for O-GlcNAc-modified peptides, (b) provides for efficient release of the captured peptides from an affinity support, and (c) facilitates complete characterization of the released peptides by ETD mass spectrometry.  相似文献   

9.
N-Deacetylase-N-sulfotransferase 1 (Ndst1) catalyzes the initial modification of heparan sulfate and heparin during their biosynthesis by removal of acetyl groups from subsets of N-acetylglucosamine units and subsequent sulfation of the resulting free amino groups. In this study, we used a phage display library to select peptides that interact with Ndst1, with the aim of finding inhibitors of the enzyme. The phage library consisted of cyclic random 10-mer peptides expressed in the phage capsid protein pIII. Selection was based on the ability of engineered phage to bind to recombinant murine Ndst1 (mNdst1) and displacement with heparin. Peptides that were enriched through multiple cycles of binding and disassociation displayed two specific sequences, CRGWRGEKIGNC and CNMQALSMPVTC. Both peptides inhibited mNdst1 activity in vitro, however, by distinct mechanisms. The peptide CRGWRGEKIGNC presents a chemokine-like repeat motif (BXX, where B represents a basic amino acid and X is a noncharged amino acid) and binds to heparan sulfate, thus blocking the binding of substrate to the enzyme. The peptide NMQALSMPVT inhibits mNdst1 activity by direct interaction with the enzyme near the active site. The discovery of inhibitory peptides in this way suggests a method for developing peptide inhibitors of heparan sulfate biosynthesis.  相似文献   

10.
The structure, N-isobutyl-4,5-dihydroxy-2(E)-decenamide, for sylvamide is confirmed by its total synthesis. The erythro stereochemistry is also established by comparison of the properties of the natural and synthetic samples.  相似文献   

11.
Treatment of methyl 2,3,4-tri-O-acetyl-l-bromo-l-deoxy-α-d-glucopyranuronate severally with 2,4,6-, 2,3,6-, and 2,3,4-tri-O-methyl derivatives of methyl α-d-glucopyranoside and with methyl 4,6-O-benzylidene-3-O-methyl-α-d-glucopyranoside, in the presence of silver carbonate, afforded crystalline aldobiouronic acid derivatives in high yield. Deacetylation followed by methylation gave a series of fully methylated derivatives of laminaribiouronic, cellobiouronic, and gentiobiouronic acids, and the (1 → 2)-linked analogue. Methylation with methyl iodide and silver oxide in N,N-dimethylformamide was invariably accompanied by a small amount ofβ-elimination, with the formation of olefinic disaccharides which were also obtained by β-elimination reactions of the precursor acetates followed by methylation. Methyl 4,5-unsaturated 4-deoxyhexopyranosyluronate derivatives were the main products of the reaction, but these underwent further degradation with cleavage of the interglycosidic linkage and formation of 6-methoxycarbonyl-4-pyrone.  相似文献   

12.
An N-acylamino acid acylase was partially purified from tobacco (Nicotiana tabacum) leaves and some of its properties are described. It hydrolyses N-acetylarginine, N-acetylmethionine, N-acetylcysteine and to a lesser extent N-formylmethionine. It does not appreciably hydrolyse N-formyl peptides and is therefore unlikely to be involved in protein synthesis.  相似文献   

13.
The predominant iron chelates, or siderochromes, produced by the fungus, Fusarium roseum during culture periods up to seven days are the ester type fusarinine compounds. During longer periods of incubation, the fusarinine compounds completely disappear from the culture medium and are replaced by a new siderochrome. The new compound has been isolated, purified, and its structure determined. It is a cyclic hexapeptide containing one residue of l-alanine, two residues of glycine and three residues of δ-N-hydroxyornithine. The hydroxylamino groups of the ornithine residues are acylated with 3 mol of malonic acid to form a negatively charged ferrichrome type chelate. The circular dichroism spectrum indicates that the stereochemistry about the iron is Λ-cis. This compound, which we name malonichrome, is not an efficient iron donor to F. roseum nor does it show growth factor activity towards Arthrobacter flavescens.  相似文献   

14.
We report here the synthesis of two amino precursors for the production of mitomycin C and 10-decarbamoylmitomycin C DNA adducts with opposite stereochemistry at C-1. The triamino mitosene precursors were synthesized in 5 steps from mitomycin C. In addition synthesis of the major mitomycin C-DNA adduct has been accomplished via coupling of a triaminomitosene with 2-fluoro-O6-(2-p-nitrophenylethyl)deoxyinosine followed by deprotection at the N2 and O6 positions.  相似文献   

15.
A novel lipid which contained long-chain base, fatty acid, galactose and N-methylaminoethylphosphonic acid in an equimolar was isolated from the viscera of Turbo cornutus.The methods used for the structural elucidation of this lipid were partial acid hydrolysis, alkaline hydrolysis, periodate oxidation and Smith degradation. The structure of breakdown products were mainly identified by combined gas chromatography and mass spectrometry.The structure of the novel lipid was determined to be 1-O-[6′-O-(N-methylaminoethylphosphonyl) galactopyranosyl] ceramide.Mass spectra of galactose-N-methylaminoethylphosphonate and glycerol-N-methylaminoethylphosphonate are given.  相似文献   

16.
Recently, a novel recombinant human erythropoietin (epoetin delta, Dynepo) has been marketed in the European Union for the treatment of chronic kidney disease, cancer patients receiving chemotherapy, and so forth. Epoetin delta is engineered in cultures of the human fibrosarcoma cell line HT-1080 by homologous recombination and “gene activation.” Unlike recombinant erythropoietins produced in other mammalian cells, epoetin delta is supposed to have a human-type glycosylation profile. However, the isoelectric focusing profile of epoetin delta differs from that of endogenous erythropoietin (both urinary and plasmatic). In this work, structural and quantitative analysis of the O- and N-glycans of epoetin delta was performed and compared with glycosylation from recombinant erythropoietin produced in Chinese hamster ovary (CHO) cells. From the comparison, significant differences in the sialylation of O-glycans were found. Furthermore, the N-glycan analysis indicated a lower heterogeneity from epoetin delta when compared with its CHO homologue, being predominantly tetraantennary without N-acetyllactosamine repeats in the former. The sialic acid characterization revealed the absence of N-glycolylneuraminic acid. The overall sugar profiles of both glycoproteins appeared to be significantly different and could be useful for maintaining pharmaceutical quality control, detecting the misuse of erythropoietin in sports, and establishing new avenues to link glycosylation with biological activity of glycoproteins.  相似文献   

17.
A method was developed for the separation and quantification of the insecticide chlorpyrifos (O,O-diethyl-O[3,5,6-trichloro-2-pyridinyl] phosphorothioate), its metabolites chlorpyrifos-oxon (O,O-diethyl-O[3,5,6-trichloro-2-pyridinyl] phosphate) and TCP (3,5,6-trichloro-2-pyridinol), the anti-nerve agent drug pyridostigmine bromide (PB; 3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide), its metabolite N-methyl-3-hydroxypyridinium bromide, the insect repellent DEET (N,N-diethyl-m-toluamide), and its metabolites m-toluamide and m-toluic acid in rat plasma and urine. The method is based on using solid-phase extraction and high-performance liquid chromatography (HPLC) with reversed-phase C18 column, and gradient UV detection ranging between 210 and 280 nm. The compounds were separated using a gradient of 1–85% acetonitrile in water (pH 3.20) at a flow-rate ranging between 1 and 1.7 ml/min over a period of 15 min. The retention times ranged from 5.4 to 13.2 min. The limits of detection ranged between 20 and 150 ng/ml, while the limits of quantitation were between 150 and 200 ng/ml. Average percentage recovery of five spiked plasma samples was 80.2±7.9, 74.9±8.5, 81.7±6.9, 73.1±7.8, 74.3±8.3, 80.8±6.6, 81.6±7.3 and 81.4±6.5, and from urine 79.4±6.9, 77.8±8.4, 83.3±6.6, 72.8±9.0, 76.3±7.7, 83.4±7.9, 81.6±7.9 and 81.8±6.8 for chlorpyrifos, chlorpyrifos-oxon, TCP, pyridostigmine bromide, N-methyl-3-hydroxypyridinium bromide, DEET, m-toluamide and m-toluic acid, respectively. The relationship between peak areas and concentration was linear over a range between 200 and 2000 ng/ml.  相似文献   

18.
A new method is described for the semisynthetic preparation of mixed-acid phosphatidylethanolamine (PE) having the natural steric configuration. Any phospholipid mixture from natural sources, e.g. soya phospholipids, can be used as the starting material. In the first step, PE is reacted with tritylbromide, and the resulting N-trityl-phosphatidylethanolamine is converted to N-trityl-glycerophosphoethanolamine (N-trityl-GPE) by alkaline hydrolysis. Reaction with tritylchloride yields 1-O,N-ditrityl-GPE, which is acylated in the 2-position with, e.g. acylimidazolides. The 1-O-protecting trityl group is then selectively removed in the presence of borontrifluoride-methanol, and the second acyl moiety is introduced by acylation with fatty acid anhydrides. After N-detritylation with trifluoroacetic acid, the final product is obtained in high yield and with less than 10% of the positional isomer. The main advantages of the new method are that it requires only a few reaction steps, that some of the intermediates need not be isolated, and that no enzymatic reaction is involved. Thus, the procedure described here can be applied to the synthesis of mixed-acid PEs on a technical scale.  相似文献   

19.
The fibrous polymer-supported sulfonic acid catalyst Smopex-101 H+ proved to be an efficient catalyst for the preparation of O-isopropylidene derivatives from a series of rare sugars. Acetonation of the reducing sugars l-arabinose, l-ribose, l-xylose, l-fucose, and l-rhamnose in N,N-dimethylformamide by 2,2-dimethoxypropane or 2-methoxypropene led to the formation of the kinetically favored di-O- and/or mono-O-isopropylidene derivatives in 46-88% yields. The method consists of a simple experimental procedure which does not require predried solvents or reagents. The catalyst is easily recovered and can be regenerated making the procedure economically viable even for large-scale synthesis.  相似文献   

20.
Enterococcus faecalis F4-9 isolated from Egyptian salted-fermented fish produces a novel bacteriocin, termed enterocin F4-9. Enterocin F4-9 was purified from the culture supernatant by three steps, and its molecular mass was determined to be 5,516.6 Da by mass spectrometry. Amino acid and DNA sequencing showed that the propeptide consists of 67 amino acid residues, with a leader peptide containing a double glycine cleavage site to produce a 47-amino-acid mature peptide. Enterocin F4-9 is modified by two molecules of N-acetylglucosamine β-O-linked to Ser37 and Thr46. The O-linked N-acetylglucosamine moieties are essential for the antimicrobial activity of enterocin F4-9. Further analysis of the enterocin F4-9 gene cluster identified enfC, which has high sequence similarity to a glycosyltransferase. The antimicrobial activity of enterocin F4-9 covered a limited range of bacteria, including, interestingly, a Gram-negative strain, Escherichia coli JM109. Enterocin F4-9 is sensitive to protease, active at a wide pH range, and moderately resistant to heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号