首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Pannexins, large non-gap junction super family exists in vertebrates, play multiple roles in different cellular functions through their ATP release. Panx1-mediated adenosine 5′-triphosphate (ATP) release plays a vital role in physiological and pathophysiological conditions and is known major extracellular molecule in purinergic signaling. To modulate their function in vivo, a proper regulation of channel is necessary. Post-translational modifications are considered to be some regulating mechanisms for PANX1, while PANX2, PANX3 have been uncharacterized to date. Through their significant evidences, PANXs exclude from gap junction and conduits ATP release and other cellular molecules from cells by various mechanisms. PANX1 is most extensive characterized and implicated in ATP signaling and inflammatory processes. Despite the constant advances, much significance of PANX1 in physiological processes remains elusive. Recently, various research groups along with our group have reported the Cryo-EM structure of Panx1 channel and uncovered the hidden functions in structure–function mechanism as well as to provide the clear understanding in physiological and pathophysiological roles. These research groups reported the novel heptameric structure with contains 4 transmembrane helices (TM), two extracellular loops and one intracellular loop with N and C terminus located at the intracellular side. In addition, the structure contains a large pore of which an inhibitor CBX act as a plug that blocking the passage of substrate. In this context, this review will present current mechanistic understanding in structure and function together with significant physiological roles particularly ATP release in health and disease. As such, this review emphasizes on recent functional properties associated with novel heptameric channel and demystifies channel-mediated ATP release function.

  相似文献   

3.
Mutations in human mitochondrial tRNA genes are associated with a number of multisystemic disorders. These single nucleotide substitutions in various domains of tRNA molecules may affect different steps of tRNA biogenesis. Often, the prominent decrease of aminoacylation and/or steady-state levels of affected mitochondrial tRNA have been demonstrated in patients' tissues and in cultured cells. Similar effect has been observed for pathogenic mutations in nuclear genes encoding mitochondrial aminoacyl-tRNA-synthetases, while over-expression of mitochondrial aminoacyl-tRNA synthetases or elongation factor EF-Tu rescued mutated tRNAs from degradation. In this review we summarize experimental data concerning the possible regulatory mechanisms governing mitochondrial tRNA steady-state levels, and propose a hypothesis based on the tRNA channelling principle. According to this hypothesis, interaction of mitochondrial tRNA with proteins ensures not only tRNA synthesis, maturation and function, but also protection from degradation. Mutations perturbing this interaction lead to decreased tRNA stability.  相似文献   

4.
5.
Since the characterization of genes encoding Ser/Thr-kinases and Tyr-kinases in bacteria, in 1991 and 1997, respectively, a growing body of evidence has been reported showing the important role of these enzymes in the regulation of bacterial physiology. While most Ser/Thr-kinases share structural similarity with their eukaryotic counterparts, it seems that bacteria have developed their own Tyr-kinases to catalyze protein phosphorylation on tyrosine. Different types of Tyr-kinases have been identified in bacteria and a large number of them are similar to ATP-binding proteins with Walker motifs. These enzymes have been grouped in the same family (BY-kinases) and the crystal structures of two of them have been recently characterized. Phosphoproteome analysis suggest that BY-kinases are involved in several cellular processes and to date, the best-characterized role of BY-kinases concerns the control of extracellular polysaccharide synthesis. Knowing the role of these compounds in the virulence of bacterial pathogens, BY-kinases can be considered as promising targets to combat some diseases. Here, we review the current knowledge on BY-kinases and discuss their potential for the development of new antibiotics.  相似文献   

6.
7.
A series of 1-[(methylsulfonyl)methyl]-2-nitro-5,6,7,8-tetrahydroindolizines and homologs were designed, prepared, and evaluated as non-sugar-type α-glucosidase inhibitors. The inhibitory activity appeared to be related to cyclo homologation with the best congeners being tetrahydroindolizines. The introduction of a methoxycarbonyl group as an additional hydrogen bond acceptor into the exocyclic methylene group was beneficial affording the most potent congener 3e (half maximal inhibitory concentration, IC50 = 8.0 ± 0.1 μM) which displayed 25-fold higher inhibitory activity than 1-deoxynojirimycin (2, IC50 = 203 ± 9 μM)—the reference compound. Kinetic analysis indicated that compound 3e is a mixed inhibitor with preference for the free enzyme over the α-glucosidase–substrate complex (Ki,free = 3.6 μM; Ki,bound = 7.6 μM). Molecular docking experiments were in agreement with kinetic results indicating reliable interactions with both the catalytic cleft and other sites. Circular dichroism spectroscopy studies suggested that the inhibition exerted by 3e may involve changes in the secondary structure of the enzyme. Considering the relatively low molecular weight of 3e together with its high fraction of sp3 hybridized carbon atoms, this nitro-substituted tetrahydroindolizine may be considered as a good starting point towards new leads in the area of α-glucosidase inhibitors.  相似文献   

8.
Cyclobutane thymine dimers (T-T) comprise the majority of DNA damage caused by short wavelength ultraviolet radiation. These lesions generally block replicative DNA polymerases and are repaired by nucleotide excision repair or bypassed by translesion polymerases in the nucleus. Mitochondria lack nucleotide excision repair, and therefore, it is important to understand how the sole mitochondrial DNA polymerase, pol γ, interacts with irreparable lesions such as T-T. We performed in vitro DNA polymerization assays to measure the kinetics of incorporation opposite the lesion and bypass of the lesion by pol γ with a dimer-containing template. Exonuclease-deficient pol γ bypassed thymine dimers with low relative efficiency; bypass was attenuated but still detectable when using exonuclease-proficient pol γ. When bypass did occur, pol γ misincorporated a guanine residue opposite the 3'-thymine of the dimer only 4-fold less efficiently than it incorporated an adenine. Surprisingly, the pol γ exonuclease-proficient enzyme excised the incorrectly incorporated guanine at similar rates irrespective of the nature of the thymines in the template. In the presence of all four dNTPs, pol γ extended the primer after incorporation of two adenines opposite the lesion with relatively higher efficiency compared with extension past either an adenine or a guanine incorporated opposite the 3'-thymine of the T-T. Our results suggest that T-T usually stalls mitochondrial DNA replication but also suggest a mechanism for the introduction of point mutations and deletions in the mitochondrial genomes of chronically UV-exposed cells.  相似文献   

9.
Iron uptake and release by ferritin molecules of different iron contents show similar profiles. These are discussed in relation to the structure of the ferritin molecule. Two models of iron uptake and release are considered. One involves iron oxidation–reduction sites on the protein. The other allows direct interaction of reagents with the iron-core crystallites. It is concluded that the second model accounts better for the experimental results presented now and in previous publications.  相似文献   

10.
Tyrosinases are metalloenzymes belonging to the type-3 copper protein family which contain two copper ions in the active site. They are found in various prokaryotes as well as in plants, fungi, arthropods, and mammals and are responsible for pigmentation, wound healing, radiation protection, and primary immune response. Tyrosinases perform two sequential enzymatic reactions: hydroxylation of monophenols and oxidation of diphenols to form quinones which polymerize spontaneously to melanin. Two other members of this family are catechol oxidases, which are prevalent mainly in plants and perform only the second oxidation step, and hemocyanins, which lack enzymatic activity and are oxygen carriers. In the last decade, several structures of plant and bacterial tyrosinases were determined, some with substrates or inhibitors, highlighting features and residues which are important for copper uptake and catalysis. This review summarizes the updated information on structure–function correlations in tyrosinases along with comparison to other type-3 copper proteins.  相似文献   

11.
Hunting is often either portrayed as the ultimate means to enact a close connection between the human being and nature, or investigated in terms of its contribution to livelihoods. Through in-depth interviews and focus group discussions, we explored the meaning of hunting in the lower Omo valley, Ethiopia, and found that large game hunting was best understood as an activity that served to establish and maintain human–human relationships. Hunting was important as it created the basis for long-term bond-relations between a hunter and his friend (‘misso’) and a hunter and his honorary elder sister (‘misha’) that could be drawn on in times of hardship. By contrast, interactions between hunter and wildlife were given hardly any attention by our participants. We discuss implications in relation to the stark decline in wildlife and the degradation of grazing land over the last decades, and the consequences of our findings for conservation and development activities.  相似文献   

12.
Lipid oxidation is a common metabolic reaction in all biological systems, appearing in developmentally regulated processes and as response to abiotic and biotic stresses. Products derived from lipid oxidation processes are collectively named oxylipins. Initial lipid oxidation may either occur by chemical reactions or is derived from the action of enzymes. In plants this reaction is mainly catalyzed by lipoxygenase (LOXs) enzymes and during recent years analysis of different plant LOXs revealed insights into their enzyme mechanism. This review aims at giving an overview of concepts explaining the catalytic mechanism of LOXs as well as the different regio- and stereo-specificities of these enzymes.  相似文献   

13.
It is supposed that α,γ-diketo acids (DKAs) inhibit the activity of hepatitis C virus RNA-dependent RNA poly-merase (RdRP HCV) via chelation of catalytic magnesium ions in the active center of the enzyme. However, DKAs display noncompetitive mode of inhibition with respect to NTP substrate, which contradicts the proposed mechanism. We have examined the NTP substrate entry channel and the active site of RdRP HCV for their possible interaction with DKAs. The substitutions R48A, K51A, and R222A greatly facilitated RdRP inhibition by DKAs and simultaneously increased K m values for UTP substrate. Interestingly, C223A was the only one of a number of substitutions that decreased K m(UTP) but facilitated the inhibitory action of DKAs. The findings allowed us to model an enzyme-inhibitor complex. According to the proposed model, DKAs introduce an additional Mg2+ ion into the active site of the enzyme at a stage of phosphodiester bond formation, which results in displacement of the NTP substrate triphosphate moiety to a catalytically inactive binding mode. This mechanism, in contrast to the currently adopted one, explains the noncompetitive mode of inhibition.  相似文献   

14.
15.
The mitochondrial calcium uniporter (MCU) is responsible for mitochondrial calcium uptake and homeostasis. It is also a target for the regulation of cellular anti‐/pro‐apoptosis and necrosis by several oncogenes and tumour suppressors. Herein, we report the crystal structure of the MCU N‐terminal domain (NTD) at a resolution of 1.50 Å in a novel fold and the S92A MCU mutant at 2.75 Å resolution; the residue S92 is a predicted CaMKII phosphorylation site. The assembly of the mitochondrial calcium uniporter complex (uniplex) and the interaction with the MCU regulators such as the mitochondrial calcium uptake‐1 and mitochondrial calcium uptake‐2 proteins (MICU1 and MICU2) are not affected by the deletion of MCU NTD. However, the expression of the S92A mutant or a NTD deletion mutant failed to restore mitochondrial Ca2+ uptake in a stable MCU knockdown HeLa cell line and exerted dominant‐negative effects in the wild‐type MCU‐expressing cell line. These results suggest that the NTD of MCU is essential for the modulation of MCU function, although it does not affect the uniplex formation.  相似文献   

16.
17.
A great deal of progress has been made in understanding both the structure and the mechanism of F1-ATPase. The primary structure is now fully known for at least five species. Sequence comparison between chloroplast, photobacteria, aerobic bacteria, and mitochondrial representatives allow us to infer more general functional relationships and evolutionary trends. Although the F1 moiety is the most studied segment of the H+-ATPase complex, there is not a full understanding of the mechanism and regulation of its hydrolytic activity. The subunit is now known to contain one and probably two nucleotide binding domains, one of which is believed to be a catalytic site. Recently, two similar models have been proposed to attempt to describe the active part of the subunits. These models are mainly an attempt to use the structure of adenylate kinase to represent a more general working model for nucleotide binding phosphotransferases. Labelling experiments seem to indicate that several critical residues outside the region described by the adenylate kinase part of this model are also actively involved in the ATPase activity. New models will have to be introduced to include these regions. Finally, it seems that a consensus has been reached with regard to a broad acceptance of the asymmetric structure of the F1-moiety. In addition, recent experimental evidence points toward the presence of nonequivalent subunits to describe the functional activity of the F1-ATPase. A summary diagram of the conformational and binding states of the enzyme including the nonequivalent subunit is presented. Additional research is essential to establish the role of the minor subunits—and of the asymmetry they introduce in F1—on the physiological function of the enzyme.  相似文献   

18.
The γ-secretase complex is a prime target for pharmacological intervention in Alzheimer’s disease and so far drug discovery efforts have yielded a large variety of potent and rather specific inhibitors of this enzymatic activity. However, as γ-secretase is able to cleave a wide variety of physiological important substrates, the real challenge is to develop substrate-specific compounds. Therefore, obtaining structural information about γ-secretase is indispensable. As crystal structures of the complex will be difficult to achieve, applied biochemical approaches need to be integrated with structural information obtained from other intramembrane-cleaving proteases. Here we review current knowledge about the structure and function of γ-secretase and discuss the value of these findings for the mechanistic understanding of this unusual protease.  相似文献   

19.
Basement membranes provide structural support and convey regulatory signals to cells in diverse tissues. Assembly of collagen IV into a sheet-like network is a fundamental mechanism during the formation of basement membranes. Peroxidasin (PXDN) was recently described to catalyze crosslinking of collagen IV through the formation of sulfilimine bonds. Despite the significance of this pathway in tissue genesis, our understanding of PXDN function is far from complete. In this work we demonstrate that collagen IV crosslinking is a physiological function of mammalian PXDN. Moreover, we carried out structure–function analysis of PXDN to gain a better insight into its role in collagen IV synthesis. We identify conserved cysteines in PXDN that mediate the oligomerization of the protein into a trimeric complex. We also demonstrate that oligomerization is not an absolute requirement for enzymatic activity, but optimal collagen IV coupling is only catalyzed by the PXDN trimers. Localization experiments of different PXDN mutants in two different cell models revealed that PXDN oligomers, but not monomers, adhere on the cell surface in “hot spots,” which represent previously unknown locations of collagen IV crosslinking.  相似文献   

20.
Mitochondrial DNA polymerase gamma (Pol γ) is the sole polymerase responsible for replication of the mitochondrial genome. The study of human Pol γ is of key importance to clinically relevant issues such as nucleoside analog toxicity and mitochondrial disorders such as progressive external ophthalmoplegia. The development of a recombinant form of the human Pol γ holoenzyme provided an essential tool in understanding the mechanism of these clinically relevant phenomena using kinetic methodologies. This review will provide a brief history on the discovery and characterization of human mitochondrial DNA polymerase γ, focusing on kinetic analyses of the polymerase and mechanistic data illustrating structure–function relationships to explain drug toxicity and mitochondrial disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号