首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cellular quiescence is a reversible state of cell cycle arrest whereby cells are temporarily maintained in the nondividing phase. Inducing quiescence in cancer cells by targeting growth receptors is a treatment strategy to slow cell growth in certain aggressive tumors, which in turn increases the efficacy of treatments such as surgery or systemic chemotherapy. However, ligand interactions with cell receptors induce receptor-mediated endocytosis followed by proteolytic degradation, which limits the duration of cellular quiescence. Here, we report the effects of targeted covalent affibody photoconjugation to epidermal growth factor receptors (EGFR) on EGFR-positive MDA-MB-468 breast cancer cells. First, covalently conjugating affibodies to cells increased doubling time two-fold and reduced ERK activity by 30% as compared to cells treated with an FDA-approved anti-EGFR antibody Cetuximab, which binds to EGFR noncovalently. The distribution of cells in each phase of the cell cycle was determined, and cells conjugated with the affibody demonstrated an accumulation in the G1 phase, indicative of G1 cell cycle arrest. Finally, the proliferative capacity of the cells was determined by the incorporation of 5-ethynyl-2-deoxyuridine and Ki67 Elisa assay, which showed that the percentage of proliferative cells with photoconjugated affibody was half of that found for the untreated control.  相似文献   

4.
Animals are routinely faced with harsh environmental conditions in which insufficient energy is available to grow and reproduce. Many animals adapt to this challenge by entering a dormant, or quiescent state. In some animals, such as the nematode Caenorhabditis elegans, quiescence is coincident with increased stress resistance and longevity. Here we review evidence that the rules of life span extension established in C. elegans may be generally true of most animals. That is, that the rate of animal aging correlates inversely with cellular resistance to physiological stress, particularly oxidative stress, and that stress resistance is co-regulated with the quiescence adaptation (where the latter occurs). We discuss evidence for highly conserved intracellular signalling pathways involved in energy sensing that are sensitive to aspects of mitochondrial energy transduction and can be modulated in response to energetic flux. We provide a broad overview of the current knowledge of the relationships between energy, metabolism and life span.  相似文献   

5.
Non-small cell lung cancer (NSCLC) is an intractable disease for which effective treatment approaches are urgently needed. The ability to induce antigen-specific immune responses in patients with lung cancer has led to the development of immunotherapy as a novel concept for the treatment of NSCLC. Adoptive cellular therapy (ACT) represents an important advancement in cancer immunotherapy with the utilization of tumor infiltrating lymphocytes, cytokine-induced killer cells, natural killer cells and γδ T cells. In this study, we review recent advances in ACT for NSCLC in clinical trials and provide a perspective on the improvement in ACT and potential therapeutic approaches using engineered T cell therapy for NSCLC.  相似文献   

6.
7.
8.
Microenvironment of the melanoma consists of cellular elements like fibroblasts, adipocytes, and keratinocytes as well as extracellular matrix and physicochemical conditions. In our previous research, we have established that melanoma influences strongly above mentioned cells present in the tumor niche and recruits them to support cancer progression. In this work, we evaluated the impact of cancer-associated cells, namely fibroblasts (CAFs), adipocytes (CAAs), and keratinocytes (CAKs) on melanoma proliferation, signaling pathways activation, metabolism as well as the effectiveness of used anti-cancer therapy. Obtained results indicated elevated phosphorylation of STAT3, upregulated GLUT1 and GLUT3 as well as downregulated of MCT-1 expression level in melanoma cells under the influence of all examined cells present in the tumor niche. The proliferation of melanoma cells was increased after co-culture with CAFs and CAKs, while epithelial-mesenchymal transition markers' expression level was raised in the presence of CAFs and CAAs. The level of perilipin 2 and lipid content was elevated in melanoma cells under the influence of CAAs. Moreover, increased expression of CYP1A1, gene encoding drug metabolizing protein, in melanoma cells co-cultured with CAFs and CAKs prompted us to verify the effectiveness of the previously proposed by us anti-melanoma therapy based on combination of EGFR and MET inhibitors. Obtained results indicate that the designed therapy is still efficient, even if the fibroblasts, adipocytes, and keratinocytes, are present in the melanoma vicinity.  相似文献   

9.
Drug targeting (i.e. administration of a drug-carrier conjugate which delivers active drug selectively to a particular tissue) has recently evolved into a new subdiscipline of experimental pharmacy/pharmacology. However, clinical experience with targeted therapy is very limited to date. This review summarizes human studies of targeted therapy. Indications for which drug targeting has been attempted include neoplastic disorders, fungal infections, enzyme replacement, hematologic and immune disorders, and iron storage disease. To date, no single drug targeting system is recommendable for routine clinical use, but present results justify further clinical evaluation in a number of situations.  相似文献   

10.
11.
Targeted cancer therapies offer renewed hope for an eventual 'cure for cancer'. At present, however, their success is often compromised by the emergence of resistant tumor cells. In many cancers, patients initially respond to single therapy treatment but relapse within months. Mathematical models of somatic evolution can predict and explain patterns in the success or failure of anticancer drugs. These models take into account the rate of cell division and death, the mutation rate, the size of the tumor, and the dynamics of tumor growth including density limitations caused by geometric and metabolic constraints. As more targeted therapies become available, mathematical modeling will provide an essential tool to inform the design of combination therapies that minimize the evolution of resistance.  相似文献   

12.
超抗原作为一种强大的T细胞激活荆,单用极低浓度便可激活大量的T淋巴细胞克隆来杀伤肿瘤细胞,但这种杀伤作用缺乏特异性.靶向治疗是现阶段肿瘤治疗的新技术,可针对各种机制来抑制肿瘤的发生和发展或消除肿瘤.时此,通过单抗导向或将超抗原结合于肿瘤细胞表面以及基因工程等手段,国内外的学者已在超抗原的靶向抗肿瘤治疗方面开展了大量工作,为肿瘤的防治提供了参考依据.  相似文献   

13.
Targeted gene alteration (TGA) is a strategy for correcting single base mutations in the DNA of human cells that cause inherited disorders. TGA aims to reverse a phenotype by repairing the mutant base within the chromosome itself, avoiding the introduction of exogenous genes. The process of how to accurately repair a genetic mutation is elucidated through the use of single‐stranded DNA oligonucleotides (ODNs) that can enter the cell and migrate to the nucleus. These specifically designed ODNs hybridize to the target sequence and act as a beacon for nucleotide exchange. The key to this reaction is the frequency with which the base is corrected; this will determine whether the approach becomes clinically relevant or not. Over the course of the last five years, workers have been uncovering the role played by the cells in regulating the gene repair process. In this essay, we discuss how the impact of the cell on TGA has evolved through the years and illustrate ways that inherent cellular pathways could be used to enhance TGA activity. We also describe the cost to cell metabolism and survival when certain processes are altered to achieve a higher frequency of repair.  相似文献   

14.
Comment on: Cellular quiescence caused by the Mdm2 inhibitor nutlin-3a. Korotchkina LG, et al. Cell Cycle 2009; 8:3777-81.  相似文献   

15.
Several cancers are thought to be driven by cells with stem cell like properties. An important characteristic of stem cells, which also applies to primitive tumor cells, is the ability to undergo quiescence, where cells can temporarily stop the cell cycle. Cellular quiescence can affect the kinetics of tumor growth, and the susceptibility of the cells to therapy. To study how quiescence affects treatment, we formulate a stochastic birth-death process with quiescence, on a combinatorial cellular mutation network, and consider the pre-treatment (growth) and treatment (decay) regimes. We find that, in the absence of mutations, treatment (if sufficiently strong) will proceed as a biphasic decline with the first (faster) phase driven by the elimination of the cycling cells and the second (slower) phase limited by the process of cell awakening. Other regimes are possible for weaker treatments. We also describe how the process of mutant generation is influenced by quiescence. Interestingly, for single-drug treatments, the probability to have resistance at start of treatment is independent of quiescence. For two or more drugs, the probability to have generated resistant mutants before treatment grows with quiescence. Finally, we study the influence of quiescence on the treatment phase. Starting from a given composition of mutants, the chances of treatment success are not influenced by the presence of quiescence.  相似文献   

16.
17.
Several cancers are thought to be driven by cells with stem cell like properties. An important characteristic of stem cells, which also applies to primitive tumor cells, is the ability to undergo quiescence, where cells can temporarily stop the cell cycle. Cellular quiescence can affect the kinetics of tumor growth, and the susceptibility of the cells to therapy. To study how quiescence affects treatment, we formulate a stochastic birth–death process with quiescence, on a combinatorial cellular mutation network, and consider the pre-treatment (growth) and treatment (decay) regimes. We find that, in the absence of mutations, treatment (if sufficiently strong) will proceed as a biphasic decline with the first (faster) phase driven by the elimination of the cycling cells and the second (slower) phase limited by the process of cell awakening. Other regimes are possible for weaker treatments. We also describe how the process of mutant generation is influenced by quiescence. Interestingly, for single-drug treatments, the probability to have resistance at start of treatment is independent of quiescence. For two or more drugs, the probability to have generated resistant mutants before treatment grows with quiescence. Finally, we study the influence of quiescence on the treatment phase. Starting from a given composition of mutants, the chances of treatment success are not influenced by the presence of quiescence.  相似文献   

18.
H Baisch 《Cytometry》1988,9(4):325-331
Three cell lines (CHO, L-929, and R1H) were investigated for their growth kinetics and the difference of exponential and quiescent state of monolayers in medium with and without serum (L-929). The noncycling populations of L-929 and R1H in medium with serum contained increased G1-phase percentages but also considerable proportions of SQ and G2Q cells. Although about 90% of the cells excluded trypan blue, the viability tested by colony assay was clearly lower than for exponentially growing cultures. CHO cells showed similar fractions of cells in G1-, S-, and G2-Q compartments but in addition considerable cell loss. The RNA content of these cells was reduced in plateau phase by 7-48% depending on cell type and residence time in the noncycling state. The data suggest that the cells suffered from nutrition depletion and were arrested in all phases of the cycle. In contrast, L-929 cells in medium without serum reduced their RNA content down to one-third that of proliferating cells and still retained the full viability as shown by the same plating efficiency in a colony assay. Since about 90% of the cells had G1 DNA content, these cells resemble true G1Q or G0 cells controlled by growth factors rather than nutritional depletion.  相似文献   

19.
20.
Microspectrofluorometry of L and WI-38 cells reveals chemical/structural changes due to quiescence or senescence, i.e., lipid peroxidation, spontaneous or photosensitized by hematoporphyrin. Cells treated with hematoporphyrin and a lysosomal umbelliferone probe show a fast-rising umbelliferone emission, plus a fluorescent photoproduct. Studies in rapidly growing versus quiescent L, early passage/late passage WI-38 cells, suggest accumulation of fluorescence Schiff bases (i.e., their association with granular regions of cells in stationary phase, spectral properties, fast increase in photosensitized cells) and a possible lysosomal membrane permeabilization in quiescent or senescent cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号