首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alefacept, an immunomodulatory recombinant fusion protein composed of the first extracellular domain of LFA-3 fused to the human IgG1 hinge, C(H)2, and C(H)3 domains, has recently been shown in phase II and III clinical trials to safely reduce disease expression in patients with chronic plaque psoriasis. Alefacept modulates the function of and selectively induces apoptosis of CD2(+) human memory-effector T cells in vivo. We have sought to gain further understanding of the mechanisms of action that influence the biological activity of alefacept and may contribute to its efficacy and patient responsiveness. Specifically evaluated is the ability of alefacept to activate intracellular signals mediated via CD2 and/or Fc gamma RIII (CD16). Experimentation using isoforms of alefacept engineered to have amino acid substitutions in the IgG1 C(H)2 domain that impact Fc gamma R binding indicate that alefacept mediates cognate interactions between cells expressing human CD2 and CD16 to activate cells, e.g., increase extracellular signal-regulated kinase phosphorylation, up-regulate cell surface expression of the activation marker CD25, and induce release of granzyme B. In the systems used, this signaling is shown to require binding to CD2 and CD16 and be mediated through CD16, but not CD2. Experimentation using human CD2-transgenic mice and isoforms of alefacept confirmed the requirement for Fc gamma R binding for detection of the pharmacological effects of alefacept in vivo. Thus alefacept acts as an effector molecule, mediating cognate interactions to activate Fc gamma R(+) cells (e.g., NK cells) to induce apoptosis of sensitive CD2(+) target cells.  相似文献   

2.
We formulate a general analysis to determine the two-dimensional dissociation constant (2D Kd), and use this method to study the interaction of CD2-expressing T cells with glass-supported planar bilayers containing fluorescently labeled CD58, a CD2 counter-receptor. Both CD2 and CD58 are laterally mobile in their respective membranes. Adhesion is indicated by accumulation of CD2 and CD58 in the cell-bilayer contact area; adhesion molecule density and contact area size attain equilibrium within 40 min. The standard (Scatchard) analysis of solution-phase binding is not applicable to the case of laterally mobile adhesion molecules due to the dynamic nature of the interaction. We derive a new binding equation, B/F=[(Ntxf)/(KdxScell)]-[(Bxp)/Kd], where B and F are bound and free CD58 density in the contact area, respectively; Nt is CD2 molecule number per cell; f is CD2 fractional mobility; Scell is cell surface area; and p is the ratio of contact area at equilibrium to Scell. We use this analysis to determine that the 2D Kd for CD2-CD58 is 5.4-7.6 molecules/microm2. 2D Kd analysis provides a general and quantitative measure of the mechanisms regulating cell-cell adhesion.  相似文献   

3.
Rosetting, or forming a cell aggregate between a single target nucleated cell and a number of red blood cells (RBCs), is a simple assay for cell adhesion mediated by specific receptor-ligand interaction. For example, rosette formation between sheep RBC and human lymphocytes has been used to differentiate T cells from B cells. Rosetting assay is commonly used to determine the interaction of Fc gamma-receptors (FcgammaR) expressed on inflammatory cells and IgG coated on RBCs. Despite its wide use in measuring cell adhesion, the biophysical parameters of rosette formation have not been well characterized. Here we developed a probabilistic model to describe the distribution of rosette sizes, which is Poissonian. The average rosette size is predicted to be proportional to the apparent two-dimensional binding affinity of the interacting receptor-ligand pair and their site densities. The model has been supported by experiments of rosettes mediated by four molecular interactions: FcgammaRIII interacting with IgG, T cell receptor and coreceptor CD8 interacting with antigen peptide presented by major histocompatibility molecule, P-selectin interacting with P-selectin glycoprotein ligand 1 (PSGL-1), and L-selectin interacting with PSGL-1. The latter two are structurally similar and are different from the former two. Fitting the model to data enabled us to evaluate the apparent effective two-dimensional binding affinity of the interacting molecular pairs: 7.19x10(-5) microm4 for FcgammaRIII-IgG interaction, 4.66x10(-3) microm4 for P-selectin-PSGL-1 interaction, and 0.94x10(-3) microm4 for L-selectin-PSGL-1 interaction. These results elucidate the biophysical mechanism of rosette formation and enable it to become a semiquantitative assay that relates the rosette size to the effective affinity for receptor-ligand binding.  相似文献   

4.
Many adhesion receptors have high three-dimensional dissociation constants (Kd) for counter-receptors compared to the KdS of receptors for soluble extracellular ligands such as cytokines and hormones. Interaction of the T lymphocyte adhesion receptor CD2 with its counter- receptor, LFA-3, has a high solution-phase Kd (16 microM at 37 degrees C), yet the CD2/LFA-3 interaction serves as an effective adhesion mechanism. We have studied the interaction of CD2 with LFA-3 in the contact area between Jurkat T lymphoblasts and planar phospholipid bilayers containing purified, fluorescently labeled LFA-3. Redistribution and lateral mobility of LFA-3 were measured in contact areas as functions of the initial LFA-3 surface density and of time after contact of the cells with the bilayers. LFA-3 accumulated at sites of contact with a half-time of approximately 15 min, consistent with the previously determined kinetics of adhesion strengthening. The two-dimensional Kd for the CD2/LFA-3 interaction was 21 molecules/microns 2, which is lower than the surface densities of CD2 on T cells and LFA-3 on most target or stimulator cells. Thus, formation of CD2/LFA-3 complexes should be highly favored in physiological interactions. Comparison of the two-dimensional (membrane- bound) and three-dimensional (solution-phase) KdS suggest that cell- cell contact favors CD2/LFA-3 interaction to a greater extent than that predicted by the three-dimensional Kd and the intermembrane distance at the site of contact. LFA-3 molecules in the contact site were capable of lateral diffusion in the plane of the phospholipid bilayer and did not appear to be irreversibly trapped in the contact area, consistent with a rapid off-rate. These data provide insights into the function of low affinity interactions in adhesion.  相似文献   

5.
《MABS-AUSTIN》2013,5(1):21-30
A single-chain triplebody (sctb) 33-ds16-ds19 comprising two distal single-chain Fv fragments (scFvs) specific for the lymphoid antigen CD19 and the myeloid antigen CD33 flanking a central scFv specific for CD16, which is the low affinity Fc-receptor (FcγRIII) present on natural killer cells and macrophages, was produced and its properties were investigated. CD33 and CD19 in combina-tion are present on acute leukemiablasts with mixed lineage phenotype, but not on normal human hematopoietic cells. For comparison, two bispecific scFvs (bsscFvs), ds19-ds16 and 33-ds16, with monovalent binding to CD19 and CD33, respectively, were also studied. The sctb 33-ds16-ds19 specifically interacted with all 3 antigens. On the antigen double-positive cell line BV-173, the sctb bound with 2-fold greater avidity than bsscFv ds19-ds16 (KD = 21 vs. 42 nM) and with 1.4-fold greater avidity than bsscFv 33-ds16 (KD = 29 nM). All 3 fusion proteins had similar affinity for CD16 and sufficient thermic stability in human serum. In antibody-dependent cellular cytotoxicity (ADCC) reactions with human mononuclear cells as effectors, the sctb promoted lysis of BV-173 cells at 23-fold lower concentrations than bsscFv ds19-ds16 and at 1.4-fold lower concentrations than bsscFv 33-ds16. The sctb also mediated potent ADCC of the antigen double-positive mixed lineage leukemia cell line SEM, and the half-maximal concentration EC50 for BV-173 cells was 7 pM. Therefore, CD19 and CD33 are present on the surface of these leukemic cell lines such that they can be connected by a single sctb molecule, permitting the recruitment of NK cells via CD16 and tumor cell lysis.  相似文献   

6.
Previous studies have shown that splenic T cells from mice that bear IgA myelomas, as well as certain T cell lines, express receptors for the Fc of IgA, and are termed Fc alpha R. In this study, we have isolated and characterized two CD3+ T cell lines derived by fusion of murine Peyer's patch (PP) CD4+ T cells with the BW 5147 lymphoma cell line. These cell lines, designated PPT4-6 and PPT4-16, were shown to bind monomeric or dimeric IgA, whereas the fusion partner did not bind either form of IgA. However, polymeric IgA (m.w. 600,000) bound equally well to all three cell lines. Similar results were also obtained with two known Fc alpha R+ T cell lines, ThHA1 nos. 9 and 10. Immunoprecipitation studies with IgA on PPT4-16 and ThHA1 no. 9 have shown that IgA binds to a 38-kDa protein. A rabbit antiserum was prepared to a 38-kDa fraction of Fc alpha R+ T cell membranes, and heterophilic antibody was removed from the antiserum by adsorption with mouse thymocytes, BW 5147 and R1.1 lymphoma. The antiserum bound to both PPT4-16 and ThHA1 no. 9 as well as to other Fc alpha R+ T cells, but did not bind to thymocytes or to the T lymphomas R1.1 or BW 5147. The antiserum appeared specific for the Fc alpha R, because it failed to block binding of anti-CD3 (145 2C11) or other surface molecule-specific antibodies. Further, competitive inhibition studies with IgA and anti-Fc alpha R (38 kDa) showed that preincubation of Fc alpha R+ T cells with the anti-38-kDa protein completely eliminated IgA binding, whereas IgA partially blocked the binding of the anti-Fc alpha R antibodies to the cell membrane. Immunoisolation with the anti-Fc alpha R antibody of radioiodinated cell membrane proteins from Fc alpha R+ T cells, but not from Fc alpha R- cells, gave a distinct band at 38 kDa. To further test the specificity of this antiserum, we have isolated T cells from spleens of IgA-myeloma bearing mice, and tested the phenotype and IgA binding. A subset consisting of 15 to 20% of CD3+, CD8+ T cells was found that bound monomeric or dimeric IgA. Further, the anti-Fc alpha R antiserum also recognized this CD8+ T cell subset, and preincubation of the cells with antibody resulted in their failure to bind IgA. Our results indicate that the Fc alpha R on T cell lines derived from PP is a 38-kDa protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Quantitative analysis of binding of the bivalent recombinant soluble fusion protein, LFA-3/IgG1, shows that the fusion protein binds to human CD2+ PBLs primarily through low affinity (KD approximately 140 microM) but also through high avidity (90 nM) interactions. The concentration dependence for LFA-3/IgG1 PBL binding took the form of two overlapping bell-shaped curves separated by a clear and reproducible minimum. This was accounted for in part by minor heterogeneity in the LFA-3/IgG1 preparations, and potentially by the ability of the ligand to bind to both CD2 and Fc receptors (FcR), best evidenced by the distinct binding properties of the fusion protein to NK and T cells. The low affinity LFA-3/ IgG1 binding to T cells is consistent with binding to CD2 only, and is in agreement with the low affinity reported for interactions between soluble forms of LFA-3 and CD2 by surface plasmon resonance technology. Moreover, as the low affinity determinations are similar for CD2 on resting and activated T cells, although the CD2 molecule has been reported to be altered to reveal new epitopes upon T cell activation, the binding data argue against multiple cell activation-dependent affinity states of CD2 for LFA-3 binding. This is distinct from that observed with other adhesion partners, and suggests that the different adhesion pathways utilize distinct mechanisms to mediate cell adhesion.  相似文献   

8.
The VLA-4 (CD49d/CD29) integrin is the only member of the VLA family expressed by resting lymphoid cells that has been involved in cell-cell adhesive interactions. We here describe the triggering of homotypic cell aggregation of peripheral blood T lymphocytes and myelomonocytic cells by mAbs specific for certain epitopes of the human VLA alpha 4 subunit. This anti-VLA-4-induced cell adhesion is isotype and Fc independent. Similar to phorbol ester-induced homotypic adhesion, cell aggregation triggered through VLA-4 requires the presence of divalent cations, integrity of cytoskeleton and active metabolism. However, both adhesion phenomena differed at their kinetics and temperature requirements. Moreover, cell adhesion triggered through VLA-4 cannot be inhibited by cell preincubation with anti-LFA-1 alpha (CD11a), LFA-1 beta (CD18), or ICAM-1 (CD54) mAb as opposed to that mediated by phorbol esters, indicating that it is a LFA-1/ICAM-1 independent process. Antibodies specific for CD2 or LFA-3 (CD58) did not affect the VLA-4-mediated cell adhesion. The ability to inhibit this aggregation by other anti-VLA-4-specific antibodies recognizing epitopes on either the VLA alpha 4 (CD49d) or beta (CD29) chains suggests that VLA-4 is directly involved in the adhesion process. Furthermore, the simultaneous binding of a pair of aggregation-inducing mAbs specific for distinct antigenic sites on the alpha 4 chain resulted in the abrogation of cell aggregation. These results indicate that VLA-4-mediated aggregation may constitute a novel leukocyte adhesion pathway.  相似文献   

9.
Quantitative analysis of binding of the bivalent recombinant soluble fusion protein, LFA-3/IgG1, shows that the fusion protein binds to human CD2+ PBLs primarily through low affinity (KD ~ 140 μM) but also through high avidity (90 nM) interactions. The concentration dependence for LFA-3/IgGl PBL binding took the form of two overlapping bell-shaped curves separated by a clear and reproducible minimum. This was accounted for in part by minor heterogeneity in the LFA-3/IgG 1 preparations, and potentially by the ability of the ligand to bind to both CD2 and Fc receptors (FcR), best evidenced by the distinct binding properties of the fusion protein to NK and T cells. The low affinity LFA-3/ IgG 1 binding to T cells is consistent with binding to CD2 only, and is in agreement with the low affinity reported for interactions between soluble forms of LFA-3 and CD2 by surface plasmon resonance technology. Moreover, as the low affinity determinations are similar for CD2 on resting and activated T cells, although the CD2 molecule has been reported to be altered to reveal new epitopes upon T cell activation, the binding data argue against multiple cell activation-dependent affinity states of CD2 for LFA-3 binding. This is distinct from that observed with other adhesion partners, and suggests that the different adhesion pathways utilize distinct mechanisms to mediate cell adhesion.  相似文献   

10.
We have generated stable Chinese hamster ovary (CHO) cell transfectants expressing either CD58 or CD59 or both molecules to compare their respective parts played in T cell adhesion and activation. Using a rosetting assay, we have shown the following: 1) The CD59 molecule was directly responsible for adhesive interaction between human T cells and CD59+ CHO transfectants. CD59-mediated adhesion induced 12 +/- 2% (mean +/- SEM, n = 25) of rosettes. 2) The CD58 molecule expressed on CD58+ CHO transfectants induced 29 +/- 6% (mean +/- SEM, n = 8) of rosettes. 3) Double transfected CD58+CD59+ CHO cells formed up to 80% of rosettes, largely exceeding the sum of rosettes formed by single transfectants, thus disclosing at least an additive and possibly a synergic action of both molecules in mediating adhesion to T cells. Culturing purified human T cells in the presence of fixed CHO transfectants and submitogenic doses of PHA + rIL-1 alpha showed that: 1) CD59+ CHO transfectants induced sevenfold T cell proliferation enhancement, demonstrating the direct involvement of the CD59 molecule in T cell activation; 2) CD58+ CHO transfectants induced 20-fold T cell proliferation increase; and 3) the enhancement induced by CD58+CD59+ CHO cells was more than 40-fold. These results suggest that CD58 and CD59 molecules present on the surface of accessory cells might exert synergic function in T cell adhesive interactions and in the stimulation of T cell activation.  相似文献   

11.
CD2 is a T cell surface glycoprotein that participates in T cell adhesion and activation. These processes are dynamically interrelated, in that T cell activation regulates the strength of CD2-mediated T cell adhesion. The lateral redistribution of CD2 and its ligand CD58 (LFA-3) in T cell and target membranes, respectively, has also been shown to affect cellular adhesion strength. We have used the fluorescence photobleaching recovery technique to measure the lateral mobility of CD2 in plasma membranes of resting and activated Jurkat T leukemia cells. CD2-mediated T cell activation caused lateral immobilization of 90% of cell surface CD2 molecules. Depleting cells of cytoplasmic Ca2+, loading cells with dibutyric cAMP, and disrupting cellular microfilaments each partially reversed the effect of CD2-mediated activation on the lateral mobility of CD2. These intracellular mediators apparently influence the same signal transduction pathways, because the effects of the mediators on CD2 lateral mobility were not additive. In separate experiments, activation-associated cytoplasmic Ca2+ mobilization was found to require microfilament integrity and to be negatively regulated by cAMP. By directly or indirectly controlling CD2 lateral diffusion and cell surface distribution, cytoplasmic Ca2+ mobilization may have an important regulatory role in CD2 mediated T cell adhesion.  相似文献   

12.
Despite evidence for the expression of low affinity Fc receptor for IgE (Fc epsilon RII)/CD23 in T cell lines and pathologic T cells, Fc epsilon RII/CD23 in normal human T cells is still unclear. We studied the expression of Fc epsilon RII/CD23 on T cells in short-term culture of normal human PBMC stimulated with 15 micrograms/ml PHA. PHA stimulation also resulted in the release of soluble Fc epsilon RII/CD23 (IgE binding factor). Using two-dimensional flow cytometry, more than 10% of the Fc epsilon RII/CD23+ cells were found to co-express CD3 Ag. Both CD4+ and CD8+ T cells expressed Fc epsilon RII/CD23. The induction of Fc epsilon RII/CD23 on PHA-activated T cells was enhanced by IL-2 as well as IL-4. Both IL-2 and IL-4 also augmented PHA-induced production of soluble Fc epsilon RII/CD23. The enhanced expression of Fc epsilon RII/CD23 on T cells by both lymphokines was suppressed by rabbit anti-IL-4 antiserum, suggesting the involvement of an IL-4-dependent process even in the IL-2-dependent Fc epsilon RII/CD23 expression on T cells. The expression of mRNA for Fc epsilon RII/CD23 on PHA and IL-4-stimulated PBMC was examined by Northern blot analysis. Fc epsilon RII/CD23 mRNA was detected in RNA prepared from the T cell fraction depleted of B cells and macrophages (Fc epsilon RII+CD3+ = 6.2%, Fc epsilon RII+CD3- = 0.8%). The expression of the mRNA for Fc epsilon RII/CD23 on CD3+ T cells was also confirmed by in situ hybridization with Fc epsilon RII/CD23 cDNA combined with CD3 rosette formation at the single cell level.  相似文献   

13.
We examined the expression, the signal transduction capacity and mouse IgG-isotype specificity of CD16 on human gamma delta T cells. CD16 is expressed by the majority of gamma delta T cells in peripheral blood and by part of the gamma delta T cell clones. The amount of CD16 expressed on gamma delta T cell clones varied considerably with passaging of the cells, but was always significantly less than on freshly isolated gamma delta T cells. Like CD16 on CD3- CD16+ natural killer (NK) cells, CD16 on gamma delta T cells can act as an activation site triggering cytotoxic activity. CD16+ gamma delta T cell clones exerted antibody-dependent cellular cytotoxicity (ADCC) which could be blocked by anti-CD16 mAb. ADCC activity of gamma delta T cell clones was also inhibited by anti-CD3 mAb, suggesting a functional linkage between the CD16 and CD3 activation pathways. MAb directed against CD16 induced lysis of Fc gamma R+ target cells by CD16+ gamma delta T cell clones. The mouse IgG-isotype specificity of CD16 on gamma delta T cells was analyzed using isotype switch variants of a murine anti-glycophorin A mAb in EA rosette assays, and was found to be identical to that of CD16 on CD3- CD16+ NK cells, i.e., highest affinity for mIgG2a, intermediate affinity for mIgG2b, and undetectable binding of mIgG1-sensitized erythrocytes. CD16 was partly modulated from the cell surface of both gamma delta T cells and NK cells after rosette formation with mIgG2a-sensitized erythrocytes, indicating that the rosette formation was indeed mediated via the CD16 molecule.  相似文献   

14.
IgE, the antibody that mediates allergic responses, acts as part of a self-regulating protein network. Its unique effector functions are controlled through interactions of its Fc region with two cellular receptors, FcεRI on mast cells and basophils and CD23 on B cells. IgE cross-linked by allergen triggers mast cell activation via FcεRI, whereas IgE-CD23 interactions control IgE expression levels. We have determined the CD23 binding site on IgE, using a combination of NMR chemical shift mapping and site-directed mutagenesis. We show that the CD23 and FcεRI interaction sites are at opposite ends of the Cε3 domain of IgE, but that receptor binding is mutually inhibitory, mediated by an allosteric mechanism. This prevents CD23-mediated cross-linking of IgE bound to FcεRI on mast cells and resulting antigen-independent anaphylaxis. The mutually inhibitory nature of receptor binding provides a degree of autonomy for the individual activities mediated by IgE-FcεRI and IgE-CD23 interactions.  相似文献   

15.
Recent studies have demonstrated that neural cell adhesion molecule (NCAM) is involved in multiple adhesive interactions with several different classes of ligands on the cell surface and in the extracellular matrix. One of these ligands is fibroblast growth factor receptor (FGFR) that is expressed on neural cells. While it is known that CD56 is a molecular isoform of NCAM expressed on human NK cells and a subset of T cells, it remains poorly characterized, with its ligand unidentified. Therefore, we were prompted to examine if CD56 molecules on NK cells interact with FGFR expressed on T cells. We demonstrate that ligation of FGFR1 beta on J.C2-14 Jurkat T cells by CD56 on fixed NK-92 cells costimulates TCR/CD3-triggered IL-2 production. CD56-binding mAbs inhibited the costimulatory effect of NK-92 cells in 50-75%. Flow cytometric analysis and cell adhesion assays showed that FGFR1 beta/Fc and FGFR2 beta/Fc chimeric proteins bind to NK-92 cells. The binding of FGFR1 beta/Fc protein to CD56 molecules was verified by immunoprecipitation of CD56 with anti-CD56 mAb followed by Western blotting with FGFR1 beta/Fc. These findings suggest that ligation of FGFR1 by CD56 may contribute to the interaction between NK cells and T cells that we have postulated in our previous studies.  相似文献   

16.
Treatment of T cells with the cysteine protease bromelain has been widely used to enhance the binding of human T cells to human E (autologous E rosettes) and has been shown to remove surface T cell CD44 molecules. Ligand binding to CD44 has been shown to markedly augment T cell activation. To study the activation potential of bromelain-treated CD44 T cells, we have compared the proliferation of sham- and bromelain-treated normal human PBMC to mitogenic CD2 mAb. We found that bromelain not only removed T cell CD44, but also removed the CD45RA isoform of CD45 as well as E2/MIC2, CD6, CD7, CD8, and Leu 8/LAM1 molecules. T cell proliferation in response to CD2 mAb was increased 325% in bromelain-treated PBMC compared to sham-treated PBMC (p < 0.005). Reciprocal treatment experiments using purified T cells and monocytes demonstrated that the enhancement of T cell CD2 activation by bromelain occurred only when T cells were treated with bromelain and was accompanied by increased adhesion of T cells to monocytes. These data demonstrate that expression of portions of the extracellular domains of the CD44, CD45RA, E2/MIC2, CD6, CD7, CD8, and Leu 8/LAM1 surface molecules are not required for CD2 activation of human T cells. Rather, the removal of these surface molecules by bromelain is associated with enhanced T cell-monocyte aggregation and enhanced CD2-mediated T cell activation. Taken together with data that CD44, E2/MIC2, CD6, and CD7 mAb inhibit CD2/lymphocyte function-associated Ag-3-mediated cellular interactions and also augment CD2-mediated triggering of T cells, these data suggest that members of the bromelain-sensitive group of surface molecules may comprise a set of CD2-associated adhesion ligands that acts in concert to modulate human T cell activation.  相似文献   

17.
Dual role of the CD44 molecule in T cell adhesion and activation   总被引:46,自引:0,他引:46  
Studies of T cell adhesion and activation reveal two new functions of the CD44 molecule, a molecule now recognized to be identical to three molecules of functional interest: Pgp-1, Hermes, and extracellular matrix receptor type III (ECMRIII). By screening for mAb which inhibit T cell adhesion to E, we have identified a functionally unique CD44-specific mAb, NIH44-1, which partially inhibits T cell rosetting by binding to CD44 on the E. NIH44-1, which immunoprecipitates a protein of 85 to 110 kDa with broad tissue distribution, was determined to be specific for CD44 based on comparison of its tissue distribution with multiple CD44-specific reference mAb and sequential immunoprecipitation with such mAb. Anticipating a role for many adhesion molecules in signal transduction, we studied the effect of CD44 mAb on T cell activation and observed that CD44 mAb dramatically augments T cell proliferation induced by CD3- and CD2-receptor-mediated activation. The augmentation of the response to immobilized CD3 mAb by exhaustively monocyte-depleted T cells indicates that augmentation can be mediated by binding to the T cell. Thus, our studies demonstrate specific new roles for CD44 in T cell adhesion and activation. Furthermore, we suggest that: 1) CD44 has a role in adhesion of cells of multiple lineages; and 2) CD44 may participate in adhesion not (only) by functioning as an adhesion receptor but rather by serving as an anchorage site for other adhesion molecules.  相似文献   

18.
To help determine CD83 function, a cDNA encoding a soluble protein containing the CD83 extracellular domain was fused with a mutated human IgG1 constant region (CD83Ig) and expressed by stable transfection of Chinese hamster ovary cells. Purified CD83Ig bound to peripheral blood monocytes and a subset of activated CD3(+)CD8(+) lymphocytes but did not bind to FcR. Monocytes that had adhered to plastic lost their ability to bind to CD83Ig after 90 min of in vitro incubation. CD83Ig bound to two of five T cell lines tested, HPB-ALL and Jurkat. The binding to HPB-ALL cells significantly increased when they were grown at a low pH (pH 6.5), whereas binding to Jurkat cells increased after apoptosis was induced with anti-Fas mAb. B cell and monocytic lines did not bind CD83Ig and neither did CD56(+) NK cells or granulocytes. Full-length CD83 expressed by a transfected carcinoma line mediated CD83-dependent adhesion to HPB-ALL cells. CD83Ig immunoprecipitated and immunoblotted a 72-kDa protein from HPB-ALL cells. Binding of CD83Ig to HPB-ALL cells was eliminated by neuraminidase treatment of the cells. We conclude that CD83 is an adhesion receptor with a counterreceptor expressed on monocytes and a subset of activated or stressed T lymphocytes, and that interaction between CD83 and its counterreceptor is dependent upon the state of glycosylation of a 72-kDa counterreceptor by sialic acid residues. In view of the selectivity of the expression of CD83 and its ligand, we postulate that the interaction between the two plays an important role in the induction and regulation of immune responses.  相似文献   

19.
It has been previously demonstrated that the HIV envelope glycoprotein gp160 can inhibit the activation of T cells triggered by phytohemagglutinin, anti-CD3 antibody and Ag, caused in part by the modulation of the expression of CD4. In this study, we show that gp160 is also able to inhibit the Ag-independent adhesion of CD4+ T cells to B cells as anti-CD4 antibodies do. In addition, synthetic peptides (14 to 21 mer) derived from the gp160 sequence and analogous to the putative binding site of gp160 to CD4 (residues 418-460), and also covering residues 460 to 474 inhibit the capacity of both CD4+ T cell proliferation induced by tuberculin and anti-CD3 antibody and adhesion. This was not associated with inhibition of Ca2+ flux in T cell activation. These inhibitory activities are specific because a) CD4+ T cells but not CD8+ T cells are susceptible to their effects, and b) soluble CD4 neutralizes the inhibitory activities. Peptides are, however, about 100- to 1000-fold less potent inhibitors than the native gp160. In addition, they do not induce CD4 modulation. It is thought therefore that at least part of the gp160 inhibitory activity is not secondary to CD4 modulation but may rely either upon steric hindrance of CD4-MHC class II interaction, of CD4/CD3 TCR complex interaction, or upon negative signaling through binding to CD4. The latter hypothesis is suggested by the inhibition by gp160, gp160-derived peptides, and anti-CD4 antibodies of the Ag-independent adhesion of CD4+ T cells. This adhesion process has been previously shown to be mediated by the LFA-1 and CD2 molecules and not by the TCR/CD3 complex and by CD4. Together, these results support the role of part of the 418-460 region of gp160 as a binding site to CD4, and suggest that binding of part of this region to CD4 can alter T cell proliferation and adhesion. It is proposed that these effects are mainly mediated by negative signaling through CD4.  相似文献   

20.
CD44 is a cell adhesion molecule implicated in leukocyte adhesion and migration, co-stimulation of T cells, and tumor metastasis. CD45 is a leukocyte-specific protein tyrosine phosphatase that dephosphorylates the Src family kinases, Lck and Fyn, in T cells. Positive regulation of Lck by CD45 is required for its effective participation in T cell receptor signaling events. Here, immobilized CD44 antibody induced a distinctive cell spreading in CD45(-), but not CD45(+), T cells, and this correlated with the induction of tyrosine-phosphorylated proteins. Two focal adhesion family kinases, Pyk2 and, to a lesser extent, FAK were inducibly phosphorylated, as was a potential substrate, Cas. CD44-mediated cell spreading and induced tyrosine phosphorylation were prevented by the Src family kinase inhibitor, PP2. Furthermore, 2-fold more Lck associated with CD44 in the low density sucrose fraction from CD45(-) T cells compared with CD45(+) T cells, suggesting that CD45 may regulate the association of Lck with CD44 in this fraction. Therefore, in CD45(-) T cells, CD44 signaling is mediated by Src family kinases, and this leads to Pyk2 phosphorylation, cytoskeletal changes, and cell spreading. This implicates CD45 in the negative regulation of Src family kinase-mediated CD44 signaling leading to T cell spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号