首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adiponectin, an adipokine secreted by adipocytes, exerts beneficial effects on glucose and lipid metabolism and has been found to improve insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. Adiponectin is found in several isoforms and the high-molecular weight (HMW) form has been linked most strongly to the insulin-sensitizing effects. Fat content in skeletal muscle (intramyocellular lipids, IMCL) and liver (intrahepatic lipids, IHL) can be quantified noninvasively using proton magnetic resonance spectroscopy ((1)H-MRS). The purpose of our study was to assess the relationship between HMW adiponectin and measures of glucose homeostasis, IMCL and IHL, and to determine predictors of adiponectin levels. We studied 66 premenopausal women (mean BMI 31.0 ± 6.6 kg/m(2)) who underwent (1)H-MRS of calf muscles and liver for IMCL and IHL, computed tomography (CT) of the abdomen for abdominal fat depots, dual-energy X-ray absorptiometry (DXA) for fat and lean mass assessments, HMW and total adiponectin, fasting lipid profile and an oral glucose tolerance test (homeostasis model assessment of insulin resistance (HOMA(IR)), glucose and insulin area under the curve). There were strong inverse associations between HMW adiponectin and measures of insulin resistance, IMCL and IHL, independent of visceral adipose tissue (VAT) and total body fat. IHL was the strongest predictor of adiponectin and adiponectin was a predictor of HOMA(IR). Our study showed that in premenopausal obese women HMW adiponectin is inversely associated with IMCL and IHL content. This suggests that adiponectin exerts positive effects on insulin sensitivity in obesity by decreasing intracellular triglyceride content in skeletal muscle and liver; it is also possible that our results reflect effects of insulin on adiponectin.  相似文献   

2.
The human immunodeficiency virus (HIV)-lipodystrophy syndrome is associated with fat redistribution and metabolic abnormalities, including insulin resistance. Increased intramyocellular lipid (IMCL) concentrations are thought to contribute to insulin resistance, being linked to metabolic and body composition variables. We examined 46 women: HIV infected with fat redistribution (n = 25), and age- and body mass index-matched HIV-negative controls (n = 21). IMCL was measured by 1H-magnetic resonance spectroscopy, and body composition was assessed with computed tomography, dual-energy X-ray absorptiometry (DEXA), and magnetic resonance imaging. Plasma lipid profile and markers of glucose homeostasis were obtained. IMCL was significantly increased in tibialis anterior [135.0 +/- 11.5 vs. 85.1 +/- 13.2 institutional units (IU); P = 0.007] and soleus [643.7 +/- 61.0 vs. 443.6 +/- 47.2 IU, P = 0.017] of HIV-infected subjects compared with controls. Among HIV-infected subjects, calf subcutaneous fat area (17.8 +/- 2.3 vs. 35.0 +/- 2.5 cm2, P < 0.0001) and extremity fat by DEXA (11.8 +/- 1.1 vs. 15.6 +/- 1.2 kg, P = 0.024) were reduced, whereas visceral abdominal fat (125.2 +/- 11.3 vs. 74.4 +/- 12.3 cm2, P = 0.004), triglycerides (131.1 +/- 11.0 vs. 66.3 +/- 12.3 mg/dl, P = 0.0003), and fasting insulin (10.8 +/- 0.9 vs. 7.0 +/- 0.9 microIU/ml, P = 0.004) were increased compared with control subjects. Triglycerides (r = 0.39, P = 0.05) and extremity fat as percentage of whole body fat by DEXA (r = -0.51, P = 0.01) correlated significantly with IMCL in the HIV but not the control group. Extremity fat (beta = -633.53, P = 0.03) remained significantly associated with IMCL among HIV-infected patients, controlling for visceral abdominal fat, abdominal subcutaneous fat, and antiretroviral medications in a regression model. These data demonstrate increased IMCL in HIV-infected women with a mixed lipodystrophy pattern, being most significantly associated with reduced extremity fat. Further studies are necessary to determine the relationship between extremity fat loss and increased IMCL in HIV-infected women.  相似文献   

3.
Insulin resistance has been associated with the accumulation of fat within skeletal muscle fibers as intramyocellular lipid (IMCL). Here, we have examined in a cross-sectional study the interrelationships among IMCL, insulin sensitivity, and adiposity in European Americans (EAs) and African Americans (AAs). In 43 EA and 43 AA subjects, we measured soleus IMCL content with proton-magnetic resonance spectroscopy, insulin sensitivity with hyperinsulinemic-euglycemic clamp, and body composition with dual-energy X-ray absorptiometry. The AA and EA subgroups had similar IMCL content, insulin sensitivity, and percent fat, but only in EA was IMCL correlated with insulin sensitivity (r = -0.47, P < 0.01), BMI (r = 0.56, P < 0.01), percent fat (r = 0.35, P < 0.05), trunk fat (r = 0.47, P < 0.01), leg fat (r = 0.40, P < 0.05), and waist and hip circumferences (r = 0.54 and 0.55, respectively, P < 0.01). In a multiple regression model including IMCL, race, and a race by IMCL interaction, the interaction was found to be a significant predictor (t = 1.69, DF = 1, P = 0.0422). IMCL is related to insulin sensitivity and adiposity in EA but not in AA, suggesting that IMCL may not function as a pathophysiological factor in individuals of African descent. These results highlight ethnic differences in the determinants of insulin sensitivity and in the pathogenesis of the metabolic syndrome trait cluster.  相似文献   

4.
Intramyocellular lipid (IMCL) storage is considered a local marker of whole body insulin resistance; because increments of body weight are supposed to impair insulin sensitivity, this study was designed to assess IMCL content, lipid oxidation, and insulin action in individuals with a moderate increment of body fat mass and no family history of diabetes. We studied 14 young, nonobese women with body fat <30% (n = 7) or >30% (n = 7) and 14 young, nonobese men with body fat <25% (n = 7) or >25% (n = 7) by means of the euglycemic-insulin clamp to assess whole body glucose metabolism, with indirect calorimetry to assess lipid oxidation, by localized (1)H NMR spectroscopy of the calf muscles to assess IMCL content, and with dual-energy X-ray absorptiometry to assess body composition. Subjects with higher body fat had normal insulin-stimulated glucose disposal (P = 0.80), IMCL content in both soleus (P = 0.22) and tibialis anterior (P = 0.75) muscles, and plasma free fatty acid levels (P = 0.075) compared with leaner subjects in association with increased lipid oxidation (P < 0.05), resting energy expenditure (P = 0.046), resting oxygen consumption (P = 0.049), and plasma leptin levels (P < 0.01) in the postabsorptive condition. In conclusion, in overweight subjects, preservation of insulin sensitivity was combined with increased lipid oxidation and maintenance of normal IMCL content, suggesting that abnormalities of these factors may mutually determine the development of insulin resistance associated with weight gain.  相似文献   

5.
Obesity in adolescents is associated with metabolic risk factors for type 2 diabetes, particularly insulin resistance and excessive accumulation of intrahepatic triglyceride (IHTG). The purpose of this study was to evaluate the effect of moderate weight loss on IHTG content and insulin sensitivity in obese adolescents who had normal oral glucose tolerance. Insulin sensitivity, assessed by using the hyperinsulinemic–euglycemic clamp technique in conjunction with stable isotopically labeled tracer infusion, and IHTG content, assessed by using magnetic resonance spectroscopy, were evaluated in eight obese adolescents (BMI ≥95th percentile for age and sex; age 15.3 ± 0.6 years) before and after moderate diet‐induced weight loss (8.2 ± 2.0% of initial body weight). Weight loss caused a 61.6 ± 8.5% decrease in IHTG content (P = 0.01), and improved both hepatic (56 ± 18% increase in hepatic insulin sensitivity index, P = 0.01) and skeletal muscle (97 ± 45% increase in insulin‐mediated glucose disposal, P = 0.01) insulin sensitivity. Moderate diet‐induced weight loss decreases IHTG content and improves insulin sensitivity in the liver and skeletal muscle in obese adolescents who have normal glucose tolerance. These results support the benefits of weight loss therapy in obese adolescents who do not have evidence of obesity‐related metabolic complications during a standard medical evaluation.  相似文献   

6.
We determined whether acquired obesity is associated with increases in liver or intra-abdominal fat or impaired insulin sensitivity by studying monozygotic (MZ) twin pairs discordant and concordant for obesity. We studied nineteen 24- to 27-yr-old MZ twin pairs, with intrapair differences in body weight ranging from 0.1 to 24.7 kg [body mass index (BMI) range 20.0-33.9 kg/m2], identified from a population-based FinnTwin16 sample. Fat distribution was determined by magnetic resonance imaging, percent body fat by dual-energy X-ray absorptiometry, liver fat by proton spectroscopy, insulin sensitivity by measuring the fasting insulin concentration, and whole body insulin sensitivity by the euglycemic insulin clamp technique. Intrapair differences in BMI were significantly correlated with those in intra-abdominal fat (r = 0.82, P < 0.001) and liver fat (r = 0.57, P = 0.010). Intrapair differences in fasting insulin correlated with those in subcutaneous abdominal (r = 0.60, P = 0.008), intra-abdominal (r = 0.75, P = 0.0001) and liver (r = 0.49, P = 0.048) fat. Intrapair differences in whole body insulin sensitivity correlated with those in subcutaneous abdominal (r = -0.72, P = 0.001) and intra-abdominal (r = -0.55, P = 0.015) but not liver (r = -0.20, P = 0.20) fat. We conclude that acquired obesity is associated with increases in intra-abdominal and liver fat and insulin resistance, independent of genetic factors.  相似文献   

7.
The prevalence of type 2 diabetes is greater among African Americans (AA) vs. European Americans (EA), independent of obesity and lifestyle. We tested the hypothesis that intramyocellular lipid (IMCL) or extramycellular lipid (EMCL) would be associated with insulin sensitivity among healthy young women, and that the associations would differ with ethnic background. We also explored the hypothesis that adipokines and estradiol would be associated with muscle lipid content. Participants were 57 healthy, normoglycemic, women and girls mean age 26 (±10) years; mean BMI 27.3 (±4.8) kg/m2; 32 AA, 25 EA. Soleus IMCL and EMCL were assessed with 1H magnetic resonance spectroscopy (MRS); insulin sensitivity with an insulin‐modified frequently sampled intravenous glucose tolerance test and minimal modeling; body composition with dual‐energy X‐ray absorptiometry; and intra‐abdominal adipose tissue (IAAT) with computed tomography. Adiponectin, leptin, and estradiol were assessed in fasting sera. Analyses indicated that EMCL, but not IMCL, was greater in AA vs. EA (2.55 ± 0.16 vs. 1.98 ± 0.18 arbitrary units, respectively, P < 0.05; adjusted for total body fat). IMCL was associated with insulin sensitivity in EA (r = ?0.54, P < 0.05, adjusted for total fat, IAAT, and age), but not AA (r = 0.16, P = 0.424). IMCL was inversely associated with adiponectin (r = ?0.31, P < 0.05, adjusted for ethnicity, age, total fat, and IAAT). In conclusion, IMCL was a significant determinant of insulin sensitivity among healthy, young, EA but not AA women. Further research is needed to determine whether the component lipids of IMCL (e.g., diacylglycerol (DAG) or ceramide) are associated with insulin sensitivity in an ethnicity specific manner.  相似文献   

8.
The prevalence of insulin resistance and type 2 diabetes (T2D) in obese youth is rapidly increasing, especially in Hispanics and African Americans compared to Caucasians. Insulin resistance is known to be associated with increases in intramyocellular (IMCL) and hepatic fat content. We determined if there are ethnic differences in IMCL and hepatic fat content in a multiethnic cohort of 55 obese adolescents. We used (1)H magnetic resonance spectroscopy (MRS) to quantify IMCL levels in the soleus muscle, oral glucose tolerance testing to estimate insulin sensitivity, magnetic resonance imaging (MRI) to measure abdominal fat distribution. Liver fat content was measured by fast-MRI. Despite similar age and % total body fat among the groups, IMCL was significantly higher in the Hispanics (1.71% [1.43%, 2.0%]) than in the African-Americans (1.04% [0.75%, 1.34%], p = 0.013) and the Caucasians (1.2% [0.94%, 1.5%], p = 0.04). Liver fat content was undetectable in the African Americans whereas it was two fold higher than normal in both Caucasians and Hispanics. Visceral fat was significantly lower in African Americans (41.5 cm(2) [34.6, 49.6]) and was similar in Caucasians (65.2 cm(2) [55.9, 76.0]) and Hispanics (70.5 cm(2) [59.9, 83.1]). In a multiple regression analysis, we found that ethnicity independent of age, gender and % body fat accounts for 10% of the difference in IMCL. Our study indicates that obese Hispanic adolescents have a greater IMCL lipid content than both Caucasians and African Americans, of comparable weight, age and gender. Excessive accumulation of fat in the liver was found in both Caucasian and Hispanic groups as opposed to virtually undetectable levels in the African Americans. Thus, irrespective of obesity, there seem to be some clear ethnic differences in the amount of lipid accumulated in skeletal muscle, liver and abdominal cavity.  相似文献   

9.
High visceral adiposity and intramyocellular lipid levels (IMCL) are both associated with the development of type 2 diabetes. The relationship between visceral adiposity and IMCL levels was explored in diet- and glucocorticoid-induced models of insulin resistance. In the diet-induced model, lean and fa/fa Zucker rats were fed either normal or high-fat (HF) chow over 4 wk. Fat distribution, IMCL content in the tibialis anterior (TA) muscle (IMCL(TA)), and whole body insulin resistance were measured before and after the 4-wk period. The HF diet-induced increase in IMCL(TA) was strongly correlated with visceral fat accumulation and greater glucose intolerance in both groups. The increase in IMCL(TA) to visceral fat accumulation was threefold greater for fa/fa rats. In the glucocorticoid-induced model, insulin sensitivity was impaired with dexamethasone. In vivo adiposity and IMCL(TA) content measurements were combined with ex vivo analysis of plasma and muscle tissue. Dexamethasone treatment had minimal effects on visceral fat accumulation while increasing IMCL(TA) levels approximately 30% (P < 0.05) compared with controls. Dexamethasone increased plasma glucose by twofold and increased the saturated fatty acid content of plasma lipids [fatty acid (CH2)n/omegaCH3 ratio +15%, P < 0.05]. The lipid composition of the TA muscle was unchanged by dexamethasone treatment, indicating that the relative increase in IMCL(TA) observed in vivo resulted from a decrease in lipid oxidation. Visceral adiposity may influence IMCL accumulation in the context of dietary manipulations; however, a "causal" relationship still remains to be determined. Dexamethasone-induced insulin resistance likely operates under a different mechanism, i.e., independently of visceral adiposity.  相似文献   

10.
Objective: Abdominal fat and myocyte triglyceride levels relate negatively to insulin sensitivity, but their interrelationships are inadequately characterized in the overweight. Using recent methods for measuring intramyocyte triglyceride, these relationships were studied in men with a broad range of adiposity. Research Methods and Procedures: Myocyte triglyceride content (1H‐magnetic resonance spectroscopy of soleus and tibialis anterior muscles and biochemical assessment of vastus lateralis biopsies), regional fat distribution (DXA and abdominal magnetic resonance imaging), serum lipids, insulin action (euglycemic hyperinsulinemic clamp), and substrate oxidation rates (indirect calorimetry) were measured in 39 nondiabetic men (35.1 ± 7.8 years) with a broad range of adiposity (BMI 28.6 ± 4.1 kg/m2, range 20.1 to 37.6 kg/m2). Results: Relationships between insulin‐stimulated glucose disposal and regional body fat depots appeared more appropriately described by nonlinear than linear models. When the group was subdivided using median total body fat as the cut‐point, insulin‐stimulated glucose disposal correlated negatively to all regional body fat measures (all p ≤ 0.004), serum triglycerides and free fatty acids (p < 0.02), and both soleus intramyocellular lipid (p = 0.003) and vastus lateralis triglyceride (p = 0.04) in the normal/less overweight group. In contrast, only visceral abdominal fat showed significant negative correlation with insulin‐stimulated glucose disposal in more overweight men (r = ?0.576, p = 0.01), some of whom surprisingly had lower than expected myocyte lipid levels. These findings persisted when the group was subdivided using different cut‐points or measures of adiposity. Discussion: Interrelationships among body fat depots, myocyte triglyceride, serum lipids, and insulin action are generally absent with increased adiposity. However, visceral abdominal fat, which corresponds less closely to total adiposity, remains an important predictor of insulin resistance in men with both normal and increased adiposity.  相似文献   

11.
Lack of physical activity has been related to an increased risk of developing insulin resistance. This study aimed to assess the impact of chronic muscle deconditioning on whole body insulin sensitivity, muscle oxidative capacity, and intramyocellular lipid (IMCL) content in subjects with paraplegia. Nine subjects with paraplegia and nine able-bodied, lean controls were recruited. An oral glucose tolerance test was performed to assess whole body insulin sensitivity. IMCL content was determined both in vivo and in vitro using (1)H-magnetic resonance spectroscopy and fluorescence microscopy, respectively. Muscle biopsy samples were stained for succinate dehydrogenase (SDH) activity to measure muscle fiber oxidative capacity. Subcellular distributions of IMCL and SDH activity were determined by defining subsarcolemmal and intermyofibrillar areas on histological samples. SDH activity was 57 ± 14% lower in muscle fibers derived from subjects with paraplegia when compared with controls (P < 0.05), but IMCL content and whole body insulin sensitivity did not differ between groups. In muscle fibers taken from controls, both SDH activity and IMCL content were higher in the subsarcolemmal region than in the intermyofibrillar area. This typical subcellular SDH and IMCL distribution pattern was lost in muscle fibers collected from subjects with paraplegia and had changed toward a more uniform distribution. In conclusion, the lower metabolic demand in deconditioned muscle of subjects with paraplegia results in a significant decline in muscle fiber oxidative capacity and is accompanied by changes in the subcellular distribution patterns of SDH activity and IMCL. However, loss of muscle activity due to paraplegia is not associated with substantial lipid accumulation in skeletal muscle tissue.  相似文献   

12.
We examined the relationship between peripheral/hepatic insulin sensitivity and abdominal superficial/deep subcutaneous fat (SSF/DSF) and intra-abdominal visceral fat (VF) in patients with type 2 diabetes mellitus (T2DM). Sixty-two T2DM patients (36 males and 26 females, age = 55 +/- 3 yr, body mass index = 30 +/- 1 kg/m2) underwent a two-step euglycemic insulin clamp (40 and 160 mU. m(-2). min(-1)) with [3-3H]glucose. SSF, DSF, and VF areas were quantitated with magnetic resonance imaging at the L(4-5) level. Basal endogenous glucose production (EGP), hepatic insulin resistance index (basal EGP x FPI), and total glucose disposal (TGD) during the first and second insulin clamp steps were similar in male and female subjects. VF (159 +/- 9 vs. 143 +/- 9 cm2) and DSF (199 +/- 14 vs. 200 +/- 15 cm(2)) were not different in male and female subjects. SSF (104 +/- 8 vs. 223 +/- 15 cm2) was greater (P < 0.0001) in female vs. male subjects despite similar body mass index (31 +/- 1 vs. 30 +/- 1 kg/m2) and total body fat mass (31 +/- 2 vs. 33 +/- 2 kg). In male T2DM, TGD during the first insulin clamp step (1st TGD) correlated inversely with VF (r = -0.45, P < 0.01), DSF (r = -0.46, P < 0.01), and SSF (r = -0.39, P < 0.05). In males, VF (r = 0.37, P < 0.05), DSF (r = 0.49, P < 0.01), and SSF (r = 0.33, P < 0.05) were correlated positively with hepatic insulin resistance. In females, the first TGD (r = -0.45, P < 0.05) and hepatic insulin resistance (r = 0.49, P < 0.05) correlated with VF but not with DSF, SSF, or total subcutaneous fat area. We conclude that visceral adiposity is associated with both peripheral and hepatic insulin resistance, independent of gender, in T2DM. In male but not female T2DM, deep subcutaneous adipose tissue also is associated with peripheral and hepatic insulin resistance.  相似文献   

13.
Objective: To test in humans the hypothesis that part of the association of adiponectin with insulin sensitivity is independent of lipid availability. Research Methods and Procedures: We studied relationships among plasma adiponectin, insulin sensitivity (by hyperinsulinemic‐euglycemic clamp), total adiposity (by DXA), visceral adiposity (VAT; by magnetic resonance imaging), and indices of lipid available to muscle, including circulating and intramyocellular lipid (IMCL; by 1H‐magnetic resonance spectroscopy). Our cohort included normal weight to obese men (n = 36). Results: Plasma adiponectin was directly associated with insulin sensitivity and high‐density lipoprotein‐cholesterol and inversely with plasma triglycerides but not IMCL. These findings are consistent with adiponectin promoting lipid uptake and subsequent oxidation in muscle and inhibiting TG synthesis in the liver. In multiple regression models that also included visceral and total fat, free fatty acids, TGs, and IMCL, either alone or in combination, adiponectin independently predicted insulin sensitivity, consistent with some of its insulin‐sensitizing effects being mediated through mechanisms other than modulation of lipid metabolism. Because VAT directly correlated with total fat and all three indices of local lipid availability, free fatty acids, and IMCL, an efficient regression model of insulin sensitivity (R2 = 0.69, p < 0.0001) contained only VAT (part R2 = 0.12, p < 0.002) and adiponectin (part R2 = 0.41, p < 0.0001) as independent variables. Discussion: Given the broad range of total adiposity and body fat distribution in our cohort, we suggest that insulin sensitivity is robustly associated with adiponectin and VAT.  相似文献   

14.
Obesity is the major risk factor for metabolic syndrome and through it diabetes as well as cardiovascular disease. Visceral fat (VF) rather than subcutaneous fat (SF) is the major predictor of adverse events. Currently, the reference standard for measuring VF is abdominal X-ray computed tomography (CT) or magnetic resonance imaging (MRI), requiring highly used clinical equipment. Dual-energy X-ray absorptiometry (DXA) can accurately measure body composition with high-precision, low X-ray exposure, and short-scanning time. The purpose of this study was to validate a new fully automated method whereby abdominal VF can be measured by DXA. Furthermore, we explored the association between DXA-derived abdominal VF and several other indices for obesity: BMI, waist circumference, waist-to-hip ratio, and DXA-derived total abdominal fat (AF), and SF. We studied 124 adult men and women, aged 18-90 years, representing a wide range of BMI values (18.5-40 kg/m(2)) measured with both DXA and CT in a fasting state within a one hour interval. The coefficient of determination (r(2)) for regression of CT on DXA values was 0.959 for females, 0.949 for males, and 0.957 combined. The 95% confidence interval for r was 0.968 to 0.985 for the combined data. The 95% confidence interval for the mean of the differences between CT and DXA VF volume was -96.0 to -16.3 cm(3). Bland-Altman bias was +67 cm(3) for females and +43 cm(3) for males. The 95% limits of agreement were -339 to +472 cm(3) for females and -379 to +465 cm(3) for males. Combined, the bias was +56 cm(3) with 95% limits of agreement of -355 to +468 cm(3). The correlations between DXA-derived VF and BMI, waist circumference, waist-to-hip ratio, and DXA-derived AF and SF ranged from poor to modest. We conclude that DXA can measure abdominal VF precisely in both men and women. This simple noninvasive method with virtually no radiation can therefore be used to measure VF in individual patients and help define diabetes and cardiovascular risk.  相似文献   

15.
The hypotheses that postexercise replenishment of intramyocellular lipids (IMCL) is enhanced by endurance training and that it depends on fat intake were tested. Trained and untrained subjects exercised on a treadmill for 2 h at 50% peak oxygen consumption, reducing IMCL by 26-22%. During recovery, they were fed 55% (high fat) or 15% (low fat) lipid energy diets. Muscle substrate stores were estimated by (1)H (IMCL)- and (13)C (glycogen)-magnetic resonance spectroscopy in tibialis anterior muscle before and after exercise. Resting IMCL content was 71% higher in trained than untrained subjects and correlated significantly with glycogen content. Both correlated positively with indexes of insulin sensitivity. After 30 h on the high-fat diet, IMCL concentration was 30-45% higher than preexercise, whereas it remained 5-17% lower on the low-fat diet. Training status had no significant influence on IMCL replenishment. Glycogen was restored within a day with both diets. We conclude that fat intake postexercise strongly promotes IMCL repletion independently of training status. Furthermore, replenishment of IMCL can be completed within a day when fat intake is sufficient.  相似文献   

16.
We evaluated palmitate rate of appearance (R(a)) in plasma during basal conditions and during a four-stage epinephrine infusion plus pancreatic hormonal clamp in nine white and nine black women with abdominal obesity, who were matched on fat-free mass, total and percent body fat, and waist-to-hip circumference ratio. On the basis of single-slice magnetic resonance imaging analysis, black women had the same amount of subcutaneous abdominal fat but less intra-abdominal fat than white women (68 +/- 9 vs. 170 +/- 14 cm(2), P < 0.05). Basal palmitate R(a) was lower in black than in white women (1.95 +/- 0.26 vs. 2.88 +/- 0.23 micromol. kg fat-free mass(-1). min(-1), P < 0.005), even though plasma insulin and catecholamine concentrations were the same in both groups. Palmitate R(a) across a physiological range of plasma epinephrine concentrations remained lower in black women, because the increase in palmitate R(a) during epinephrine infusion was the same in both groups. We conclude that basal and epinephrine-stimulated palmitate R(a) is lower in black than in white women with abdominal obesity. The differences in basal palmitate kinetics are not caused by alterations in plasma insulin or catecholamine concentrations or lipolytic sensitivity to epinephrine. The lower rate of whole body fatty acid flux and smaller intra-abdominal fat mass may have clinical benefits because of the relationship between excessive fatty acid availability and metabolic diseases.  相似文献   

17.
Fat can be stored not only in adipose tissue but also in other tissues such as skeletal muscle. Fat droplets accumulated in skeletal muscle [intramyocellular lipids (IMCLs)] can be quantified by different methods, all with advantages and drawbacks. Here, we briefly review IMCL quantification methods that use biopsy specimens (biochemical quantification, electron microscopy, and histochemistry) and non-invasive alternatives (magnetic resonance spectroscopy, magnetic resonance imaging, and computed tomography). Regarding the physiological role, it has been suggested that IMCL serves as an intracellular source of energy during exercise. Indeed, IMCL content decreases during prolonged submaximal exercise, and analogously to glycogen, IMCL content is increased in the trained state. In addition, IMCL content is highest in oxidative, type 1 muscle fibers. Together, this, indeed, suggests that the IMCL content is increased in the trained state to optimally match fat oxidative capacity and that it serves as readily available fuel. However, elevation of plasma fatty acid levels or dietary fat content also increases IMCL content, suggesting that skeletal muscle also stores fat simply if the availability of fatty acids is high. Under these conditions, the uptake into skeletal muscle may have negative consequences on insulin sensitivity. Besides the evaluation of the various methods to quantify IMCLs, this perspective describes IMCLs as valuable energy stores during prolonged exercise, which, however, in the absence of regular physical activity and with overconsumption of fat, can have detrimental effects on muscular insulin sensitivity.  相似文献   

18.

Objective

Visceral fat (VF) increases cardiometabolic risk more than fat stored subcutaneously. Here, we investigated how well routine clinical measures of adiposity, namely body mass index (BMI) and waist circumference (waist), predict VF and subcutaneous fat (SF) in a large population-based sample of adolescents. As body-fat distribution differs between males and females, we performed these analyses separately in each sex.

Design and Methods

VF and SF were measured by magnetic resonance imaging in 1,002 adolescents (482 males, age 12–18 years). Relationships of BMI and waist with VF and SF were tested in multivariable analyses, which adjusted for potentially confounding effects of age and height.

Results

In both males and females, BMI and waist were highly correlated with VF and SF, and explained 55–76% of their total variance. When VF was adjusted for SF, however, BMI and waist explained, respectively, only 0% and 4% of VF variance in males, and 4% and 11% of VF variance in females. In contrast, when SF was adjusted for VF, BMI and waist explained, respectively, 36% and 21% of SF variance in males, and 48% and 23% of SF variance in females. These relationships were similar during early and late puberty.

Conclusions and Relevance

During adolescence, routine clinical measures of adiposity predict well SF but not VF. This holds for both sexes and throughout puberty. Further longitudinal studies are required to assess how well these measures predict changes of VF and SF over time. Given the clinical importance of VF, development of cost-effective imaging techniques and/or robust biomarkers of VF accumulation that would be suitable in everyday clinical practice is warranted.  相似文献   

19.
Treated HIV infection and HIV‐lipoatrophy increases risk of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Circulating inflammatory molecules may, in part, explain this increased risk. This study examined circulating inflammatory molecules in treated HIV infection in relation to insulin sensitivity, lipids total body, and intramyocellular fat, compared to insulin‐resistant obesity (an index group at high risk of diabetes). Detailed metabolic phenotypes were measured in 20 treated HIV‐infected men (with and without subcutaneous lipoatrophy) vs. 26 insulin‐resistant obese men (IR‐O, n = 26), including inflammatory molecules, insulin sensitivity, total body fat (TBF), visceral fat (visceral adipose tissue (VAT)), and intramyocellular lipid (IMCL). C‐reactive protein (CRP) levels in treated HIV were similar to those in IR‐O, despite lower TBF and greater insulin sensitivity in treated HIV. In HIV‐lipoatrophy, CRP was higher than that found in IR‐O. Adiponectin was similar between treated HIV and IR‐O, but significantly lower in those with HIV‐lipoatrophy. In treated HIV, subjects with higher CRP had significantly higher total cholesterol, VAT, and IMCL. In treated HIV, subjects with lower adiponectin had significantly lower HDL and higher triglycerides, glucose, VAT, and IMCL. In conclusion, a proinflammatory milieu equivalent to that of insulin‐resistant obesity characterizes lean men with treated HIV infection, worse in those with subcutaneous lipoatrophy. These factors may contribute to the accelerated diabetogenesis and cardiac risk observed in treated HIV infection.  相似文献   

20.
Although insulin resistance and type 2 diabetes (T2DM) are associated with upper body fat distribution, it is unknown whether insulin resistance predisposes to upper body fat gain or whether upper body fat gain causes insulin resistance. Our objective was to determine whether insulin sensitivity predicts abdominal (subcutaneous and/or visceral) fat gain in normal weight adults. Twenty-eight (15 men) lean (BMI = 22.1 ± 2.5 kg/m(2)), healthy adults underwent ~8 weeks of overfeeding to gain ~4 kg fat. Body composition was assessed before and after overfeeding, using dual-energy X-ray absorptiometry (DXA) and abdominal computed tomography to measure total and regional (visceral, abdominal, and lower body subcutaneous) fat gain. We assessed insulin sensitivity with an intravenous glucose tolerance test (IVGTT) and the 24-h insulin area under the curve (AUC). We found a wide range of insulin sensitivity and a relatively narrow range of body fat distribution in this normal weight cohort. Participants gained 3.8 ± 1.7 kg of body fat (4.6 ± 2.2 kg body weight). The baseline 24-h AUC of insulin concentration was positively correlated with percent body fat (r = 0.43, P < 0.05). The contribution of leg fat gain to total fat gain ranged from 29 to 79%, whereas the contributions of abdominal subcutaneous fat and visceral fat gain to total fat gain ranged from 17 to 69% and -5 to 22%, respectively. Baseline insulin sensitivity, whether measured by an IVGTT (S(i)) or the 24-h AUC insulin, did not predict upper body subcutaneous or visceral fat gain in response to overfeeding. We conclude that reduced insulin sensitivity is not an obligate precursor to upper body fat gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号