首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire is known to have dramatic consequences on forest ecosystems around the world and on the livelihoods of forest‐dependent people. While the Eastern Ghats of India have high abundances of fire‐prone dry tropical forests, little is known about how fire influences the diversity, composition, and structure of these communities. Our study aimed to fill this knowledge gap by examining the effects of the presence and the absence of recent fire on tropical dry forest communities within the Kadiri watershed, Eastern Ghats. We sampled plots with and without evidence of recent fire in the Eswaramala Reserve Forest in 2008 and 2018. Our results indicate that even though stem density increases in the recently burned areas, species richness is lower because communities become dominated by a few species with fire resistance and tolerance traits, such as thick bark and clonal sprouting. Further, in the presence of fire, the size structure of these fire‐tolerant species shifts toward smaller‐sized, resprouting individuals. Our results demonstrate that conservation actions are needed to prevent further degradation of forests in this region and the ecosystem services they provide.  相似文献   

2.
Fire is a frequent disturbance in the tropical dry forests of Central America, yet very little is known about how native species respond to such events. We conducted an experimental burn in a tropical dry forest of western Nicaragua to evaluate plant responses to fire with respect to survivorship and recruitment. Measurements of woody vegetation of all size classes were carried out prior to the prescribed burn and three successive years post fire. We selected the 15 most abundant species <10 cm DBH to assess percent survivorship and sprouting responses post fire. Changes in seedling densities for these 15 most abundant species and the 15 least abundant species were analyzed using a repeated measure ANOVA. We also assessed changes in seedling densities for three species of international conservation concern. We found three major fire‐coping strategies among common dry forests plants: resisters (low fire‐induced mortality), resprouters (vigorous sprouting), and recruiters (increased seeding post‐fire). While survivorship was generally high relative to tropical moist forest species, those species with lower survivorship used either seeding or sprouting as an alternative strategy for persisting in the forest community. Seed dispersal mechanisms, particularly wind dispersal, appear to be an important factor in recruitment success post‐fire. Burn treatment led to a significant increase in the density of seedlings for two species of conservation concern: Guaiacum sanctum and Swietenia humilis. Results of this study suggest that common dry forest species in western Nicaragua are fire tolerant. Further study of individual species and their fire responses is merited.  相似文献   

3.
We studied the composition, species richness, and relative abundance of bat assemblages in the Colombian dry forests of Chicamocha and Patía. In Chicamocha, 11 bats of the family Phyllostomidae were captured with mist-nets, corresponding to 85–100% of the potential phyllostomids species in the area. Two bats of the family Vespertilionidae were also captured in Chicamocha. In Patía, 12 species were captured with mist-nets, all Phyllostomidae, representing 72–100% of the estimated total number of species in the zone. Minor differences in number of species and composition were detected among sampling periods in Chicamocha. The most common species in this dry forest were Glossophaga longirostris and Sturnira lilium. In Patía, notable differences in the number of species and composition were observed among sampling periods, and the most common species were Artibeus jamaicensis, Carollia perspicillata and Phyllostomus discolor. Arid-zone dwelling bats were absent in Patía and we suggest that this absence may be associated with the isolation of Patía from other northern dry zones of Colombia since Quaternary times. There was also low abundance of bats in Patía, which appears to be related to human disturbance. The most abundant phyllostomid bat species in the two dry forests studied are those that include fruit and/or nectar-pollen from columnar cacti as an important proportion of their diets.  相似文献   

4.
Hirobe  Muneto  Tokuchi  Naoko  Wachrinrat  Chongrak  Takeda  Hiroshi 《Plant and Soil》2003,249(2):309-318
Spatial patterns of soil nitrogen (N) transformations were examined using geostatistical analysis in three adjacent stands with different fire history (0, 10 and 35 years since the latest fire, respectively) in a dry tropical forest in Thailand. A larger pool of total inorganic N and a faster rate of N mineralization were recorded in the stand with longer fire prevention. At the spatial scale analyzed, the proportion of spatially dependent variance to the total variance of N mineralization and nitrification increased from 0.39 to 0.73, and from 0.40 to 0.77, respectively, with the time since the latest fire. The spatial autocorrelation ranges of N mineralization and nitrification decreased from 9.0 to 3.28 m, and 9.0 to 2.77 m, respectively, with the time since the latest fire. These results suggested that fire history affected not only the level of available soil N, but also the spatial heterogeneity of soil N transformations, presumably due to the difference in plant influences on soil.  相似文献   

5.
Although natural catastrophic disturbance of tropical forests in Asia can be caused by volcanism and earthquakes climate-induced catastrophes are most widespread. These are prevalent and most diverse at high tropical latitudes because of the single annual dry and wet monsoon. Comparative studies indicate that periodicity of catastrophes may influence forest physiognomy, structure and species richness but long-term research in sample plots suggests that a variety of other factors are locally influential. The importance of accounting for natural catastrophes in silvicultural protocols is stressed, and research priorities identified.  相似文献   

6.
Xishuangbanna is a region located at the northern edge of tropical Asia. Biomass estimates of its tropical rain forest have not been published in English literature. We estimated forest biomass and its allocation patterns in five 0.185–1.0 ha plots in tropical seasonal rain forests of Xishuangbanna. Forest biomass ranged from 362.1 to 692.6 Mg/ha. Biomass of trees with diameter at 1.3 m breast height (DBH) ≥ 5 cm accounted for 98.2 percent of the rain forest biomass, followed by shrubs (0.9%), woody lianas (0.8%), and herbs (0.2%). Biomass allocation to different tree components was 68.4–70.0 percent to stems, 19.8–21.8 percent to roots, 7.4–10.6 percent to branches, and 0.7–1.3 percent to leaves. Biomass allocation to the tree sublayers was 55.3–62.2 percent to the A layer (upper layer), 30.6–37.1 percent to the B layer (middle), and 2.7–7.6 percent to the C layer (lower). Biomass of Pometia tomentosa, a dominant species, accounted for 19.7–21.1 percent of the total tree biomass. The average density of large trees (DBH ≥100 cm) was 9.4 stems/ha on two small plots and 3.5 stems/ha on two large plots, illustrating the potential to overestimate biomass on a landscape scale if only small plots are sampled. Biomass estimations are similar to typical tropical rain forests in Southeast Asia and the Neotropics.  相似文献   

7.
Aim This study appraises historical fire regimes for Californian mixed‐conifer forests of the Sierra San Pedro Mártir (SSPM). The SSPM represents the last remaining mixed‐conifer forest along the Pacific coast still subject to uncontrolled, periodic ground fire. Location The SSPM is a north–south trending fault bound range, centred on 31°N latitude, 100 km SE of Ensenada, Baja California. Methods We surveyed forests for composition, population structure, and historical dynamics both spatially and temporally over the past 65 years using repeat aerial photographs and ground sampling. Fire perimeter history was reconstructed based on time‐series aerial photographs dating from 1942 to 1991 and interpretable back to 1925. A total of 256 1‐ha sites randomly selected from aerial photographs were examined along a chronosequence for density and cover of canopy trees, density of snags and downed logs, and cover of non‐conifer trees and shrubs. Twenty‐four stands were sampled on‐the‐ground by a point‐centred quarter method which yielded data on tree density, basal area, frequency, importance value, and shrub and herb cover. Results Forests experience moderately intense understory fires that range in size to 6400 ha, as well as numerous smaller, low intensity burns with low cumulative spatial extent. SSPM forests average 25–45% cover and 65–145 trees per ha. Sapling densities were two to three times that of overstory trees. Size‐age distributions of trees ≥ 4 cm dbh indicate multi‐age stands with steady‐state dynamics. Stands are similar to Californian mixed conifer forests prior to the imposition of fire suppression policy. Livestock grazing does not appear to be suppressing conifer regeneration. Main conclusions Our spatially‐based reconstruction shows the open forest structure in SSPM to be a product of infrequent, intense surface fires with fire rotation periods of 52 years, rather than frequent, low intensity fires at intervals of 4–20 years proposed from California fire‐scar dendrochronology (FSD) studies. Ground fires in SSPM were intense enough to kill pole‐size trees and a significant number of overstory trees. We attribute long fire intervals to the gradual build‐up of subcontinuous shrub cover, conifer recruitment and litter accumulation. Differences from photo interpretation and FSD estimates are due to assumptions made with respect to site‐based (point) sampling of fire, and nonfractal fire intensities along fire size frequency distributions. Fire return intervals determined by FSD give undue importance to local burns which collectively use up little fuel, cover little area, and have little demographic impact on forests.  相似文献   

8.
We investigate the geographical and historical context of diversification in a complex of mutualistic Crematogaster ants living in Macaranga trees in the equatorial rain forests of Southeast Asia. Using mitochondrial DNA from 433 ant colonies collected from 32 locations spanning Borneo, Malaya and Sumatra, we infer branching relationships, patterns of genetic diversity and population history. We reconstruct a time frame for the ants' diversification and demographic expansions, and identify areas that might have been refugia or centres of diversification. Seventeen operational lineages are identified, most of which can be distinguished by host preference and geographical range. The ants first diversified 16-20 Ma, not long after the onset of the everwet forests in Sundaland, and achieved most of their taxonomic diversity during the Pliocene. Pleistocene demographic expansions are inferred for several of the younger lineages. Phylogenetic relationships suggest a Bornean cradle and major axis of diversification. Taxonomic diversity tends to be associated with mountain ranges; in Borneo, it is greatest in the Crocker Range of Sabah and concentrated also in other parts of the northern northwest coast. Within-lineage genetic diversity in Malaya and Sumatra tends to also coincide with mountain ranges. A series of disjunct and restricted distributions spanning northern northwest Borneo and the major mountain ranges of Malaya and Sumatra, seen in three pairs of sister lineages, further suggests that these regions were rain-forest refuges during drier climatic phases of the Pleistocene. Results are discussed in the context of the history of Sundaland's rain forests.  相似文献   

9.
10.
The effects of fire on forest structure and composition were studied in a severely fire-impacted landscape in the eastern Amazon. Extensive sampling of area forests was used to compare structure and compositional differences between burned and unburned forest stands. Burned forests were extremely heterogeneous, with substantial variation in forest structure and fire damage recorded over distances of <50 m. Unburned forest patches occurred within burned areas, but accounted for only six percent of the sample area. Canopy cover, living biomass, and living adult stem densities decreased with increasing fire inrensiry / frequency, and were as low as 10–30 percent of unburned forest values. Even light burns removed >70 percent of the sapling and vine populations. Pioneer abundance increased dramatically with burn intensity, with pioneers dominating the understory in severely damaged areas. Species richness was inversely related to burn severity, but no clear pattern of species selection was observed. Fire appears to be a cyclical event in the study region: <30 percent of the burned forest sample had been subjected to only one burn. Based on estimated solar radiation intensities, burning substantially increases fire susceptibility of forests. At least 50 percent of the total area of all burned forests is predicted to become flammable within 16 rainless days, as opposed to only 4 percent of the unburned forest. In heavily burned forest subjected to recurrent fires, 95 percent of the area is predicted to become flammable in <9 rain-free days. As a recurrent disturbance phenomenon, fire shows unparalleled potential to impoverish and alter the forests of the eastern Amazon.  相似文献   

11.
We assessed woody plant communities in two widely separated forests in the tropical dry forest (TDF) biome of Mexico for evidence of similar patterns of species commonness and rarity. We used belt transects laid out along contour lines (i.e., constant elevation) and stratified across elevation gradients at sites in Jalisco and Oaxaca to sample woody plant species diversity, abundance, relative frequency and basal area. We assembled a combined species list and compared species found in both sites (shared) to species found in only one site, assessing whether the most and least common species at a site tended to be shared or unshared. Of the 8242 individuals sampled, 370 species or morpho‐species were identified, with 222 species recorded at the Jalisco site and 270 at the Oaxaca site—122 (33%) species were shared across sites. Abundance, frequency and basal area of shared species were greater on average than for unshared species, and were positively correlated across sites. A subset of 68 shared species (18%) accounted for over half of all individuals encountered at the two sites. Species in the most common quartile were more likely to be shared than expected by chance, while species in the least common quartile were less likely. A genus‐level analysis found similar patterns. Our findings suggest that the TDF of Pacific coast Mexico shows evidence of widespread dominance by a small subset of species. These findings have potentially important implications for predicting species composition, understanding the role of oligarchic species in ecological processes, and conserving rare species.  相似文献   

12.
A tree species, Macaranga bancana , distributed in South East Asian tropics has a mutualistic relationship with specific symbiotic ant species, which defend the plant from herbivores. To examine the intraspecific variation in the status of the ant-plant symbiosis among microhabitats of different light conditions, we investigated the species composition of nesting ants and the herbivory damage on M. bancana saplings by field observations and sampling in primary and secondary forests in Sarawak. In addition, the effectiveness of non-ant (physical and chemical) defenses were estimated by feeding the larvae of a polyphagous lepidopteran with M. bancana leaves from saplings in the two types of forests. All saplings in the primary forest were colonized by two Crematogaster ant species that had been known to be the obligate symbionts of M. bancana, while in the secondary forest, about half of the saplings were occupied by several ant species that were not obligate symbionts. There was little herbivory damage on saplings colonized by the two Crematogaster symbiont ants in both forest types, while the saplings colonized by the other ant species suffered a 10–60% loss of leaf area. Larval mortality of the polyphagous lepidopteran Spodoptera litura was significantly higher when larvae fed on leaves of M. bancana saplings in the secondary forest than when fed on leaves of M. bancana saplings in the primary forest. These results suggest that the symbiosis between ants and M. bancana is looser and the non-ant-defenses are stronger in secondary forests, where light is more intense, than in primary forests.  相似文献   

13.
14.
This study aims to identify the flower visitors of Mucuna thailandica (Fabaceae), endemic plant species in montane forests in Thailand, to determine their potential pollinators. The genus Mucuna produces papilionaceous flowers and has an explosive flower‐opening step. Explosive opening rapidly exposes stamens and pistil from keel petals and releases pollen. The flower of this species depends completely on animals to perform this step, essential for pollination success. Using a camera trap survey, we revealed that non‐flying mammals, such as squirrels (Callosciurus sp.) and masked palm civets (Paguma larvata), opened flowers explosively. Thus, these mammals contribute to the pollination of M. thailandica. This is the first report of non‐flying mammals contributing to pollination in montane forests in tropical Asia.  相似文献   

15.
16.
Climate change,fuel and fire behaviour in a eucalypt forest   总被引:2,自引:0,他引:2  
A suite of models was used to examine the links between climate, fuels and fire behaviour in dry eucalypt forests in south‐eastern Australia. Predictions from a downscaled climate model were used to drive models of fuel amount, the moisture content of fuels and two models of forest fire behaviour at a location in western Sydney in New South Wales, Australia. We found that a warming and drying climate produced lower fine fuel amounts, but greater availability of this fuel to burn due to lower moisture contents. Changing fuel load had only a small effect on fuel moisture. A warmer, drier climate increased rate of spread, an important measure of fire behaviour. Reduced fuel loads ameliorated climate‐induced changes in fire behaviour for one model. Sensitivity analysis of the other fire model showed that changes in fuel amount induced changes in fire behaviour of a similar magnitude to that caused directly by sensitivity to climate. Projection of changes in fire risk requires modelling of changes in vegetation as well as changes in climate. Better understanding of climate change effects on vegetation structure is required.  相似文献   

17.
Aim The aims of this paper are to reconstruct the vegetation and fire history over the past 2000 years in a well‐preserved rain‐forest area, to understand interactions between climate, fire, and vegetation, and to predict how rain forest responds to global warming and increased intensity of human activity. Location Xishuangbanna, south‐west China, 21–22° N, 101–102° E. Methods Phytolith (plant opal silica bodies) morphotypes, assemblages, and indices were used to reconstruct palaeovegetation and palaeoclimate changes in detail. Micro‐charcoal particles found in phytolith slides, together with burnt phytoliths and highly weathered bulliform cells, were employed to reconstruct a record of past fire occurrence. A survey of field sediments, lithology, and 14C dating were also employed. Results Phytoliths were divided into 11 groups and classified into 33 well‐described morphotypes according to their shape under light microscopy and their presumed anatomical origins and ecological significance. The phytolith assemblages were divided into six significant zones that reveal a complete history of vegetation changes corresponding to climate variation and fire occurrence. Phytolith assemblages and indices show that the palaeoclimate in the study area is characterized by the alternation of warm–wet and cool–dry conditions. Phytolith and charcoal records reveal that 12 fire episodes occurred. Comparison of burnt phytoliths with an aridity index (Iph) shows that fire episodes have a strong relationship with drought events. Main conclusions Our results indicate that fire occurrence in the tropical rain forest of Xishuangbanna is predominantly under the control of natural climate variability (drought events). Nearly every fire episode is coupled with a climatic event and has triggered vegetation composition changes marked by a pronounced expansion of grasses. This indicates that drought interacts with fire to exert a strong influence on the ecological dynamics of the rain forest. However, the impact of human activity in recent centuries is also significant. Our results are important for understanding the interactions between climate, fire, and vegetation, and for predicting how rain forest responds to global warming and increased human activity.  相似文献   

18.
Tropical peatlands, which coexist with swamp forests, have accumulated vast amounts of carbon as soil organic matter. Since the 1970s, however, deforestation and drainage have progressed on an enormous scale. In addition, El Niño and Southern Oscillation (ENSO) drought and large‐scale fires, which grow larger under the drought condition, are accelerating peatland devastation. That devastation enhances decomposition of soil organic matter and increases the carbon release to the atmosphere as CO2. This phenomenon suggests that tropical peatlands have already become a large CO2 source, but related quantitative information is limited. Therefore, we evaluated the CO2 balance of a tropical peat swamp forest in Central Kalimantan, Indonesia, using 3 years of CO2 fluxes measured using the eddy covariance technique from 2002 through 2004. The forest was disturbed by drainage; consequently, groundwater level (GL) was reduced. The net ecosystem CO2 production (NEP) measurements showed seasonal variation, which was slightly positive or almost zero in the early dry season, and most‐negative late in the dry season or early the rainy season. This seasonality is attributable to the seasonal pattern of climate, tree phenology and fires. Slightly positive NEP resulted from smaller ecosystem respiration (RE) and larger gross primary production (GPP) under conditions of high photosynthetic photon flux density (PPFD) and large leaf area index (LAI). The most‐negative NEP resulted from smaller GPP and larger RE. The smaller GPP was related to high vapor pressure deficit (VPD), small LAI and low PPFD because of smoke from fires. The larger RE was related to low GL. Annual NEP values were estimated respectively as −602, −382 and −313 g C m−2 yr−1 for 2002, 2003 and 2004. These negative NEP values show that the tropical peat swamp forest, disturbed by drainage, functioned as a CO2 source. That source intensity was highest in 2002, an ENSO year, mainly because of low PPFD caused by dense smoke emitted from large fires.  相似文献   

19.
Nine dinucleotide microsatellites were developed in Astronium urundeuva (Anacardiaceae), a typical tree of the seasonally‐dry tropical forests of South America and characterized on three populations from Paraguay and Argentina. Seven microsatellites were found polymorphic in within population gene diversities ranging from 0.32 to 0.91, and an observed number of alleles varying between four and 20. Despite their relatively low number of alleles, these markers proved valuable tools in detecting genetic structure between three populations in Paraguay and North Argentina.  相似文献   

20.
Summary Grain production in two 1/4 hectare plots gave 2971 and 1380 kg/ha for an average yield of 2175 kg/ha. Average yield for local farmers was 1700 kg/ha. Weed biomass accounted for 50% of total bioomass in the hydric Site 4, but held 64–83% of the total nutrients. In the mesic Site 1, values were 5% and 3–29% respectively.Canna edulis was the most abundant weed species. Soil nutrient levels neither increased or decreased significantly between clearing and harvesting. Any decline in future crop production would be due to increased weed competition and not a decline in soil fertility. Weevil (Sitophilus zeamais) infestation is a serious problem in hybrid corn not encountered with local varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号