首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The immI operon of phage P1 contains the genes c4, icd, and ant, which are transcribed in that order from the same constitutive promoter, P51b. The gene c4 encodes an antisense RNA which inhibits the synthesis of an antirepressor by acting on a target ant mRNA. Interaction depends on the complementarity of two pairs of short sequences encompassing virs+ and the ribosome-binding site involved in ant expression. Accordingly, in a P1 virs mutant phage, antirepressor is synthesized constitutively. We have isolated lysogen-proficient, second-site suppressors of P1 virs in order to evaluate the interdependence of the immI-specific genes. From a total of 17 suppressors analyzed, 15 were found to be located in the icd gene. They were identified as frameshift mutations, containing base insertions or deletions in tandem repeats of a single base pair. One suppressor was identified as a P51b promoter-down mutation; the second site of another suppressor was found to be located in the c4 gene. Furthermore, it was shown that virs cannot be suppressed by ant (icd+) suppressors. The results confirm the model that the immI operon is transcribed as a unit, that the icd and ant genes are translationally coupled, and that the constitutive synthesis of Icd protein alone is lethal to the bacterial cell. The existence of a c4 suppressor of virs, whose effect is not yet known, points to a still more complex regulation of antirepressor synthesis than was anticipated from the model.  相似文献   

2.
Bacteriophage P1 encodes a tripartite immunity system composed of the immC, immI, and immT region. Their basic genetic elements are the c1 repressor of lytic functions, the c4 repressor which negatively regulates antirepressor synthesis, and the bof gene, respectively. The function of the latter will be described here. We have cloned and sequenced the bof gene from P1 wild type and a P1 bof amber mutant. Based on the position of a TAG codon of the bof amber mutant the bof wild type gene was localized. It starts with a TTG codon, comprises 82 codons, and is preceded by a promoter structure. The bof protein (Mr = 7500) was overproduced in Escherichia coli from a bof recombinant plasmid and was purified to near homogeneity. The N-terminal amino acids predicted from the DNA sequence of the bof gene were confirmed by sequence analysis of the bof protein. Using a DNA mobility shift assay, we show that bof protein enhances the binding of c1 repressor to the operator of the c1 gene. In accordance with this result, in transformants of Escherichia coli, containing both a bof- and a c1-encoding plasmid, c1 expression is down-regulated. We conclude that bof acts as a modulator protein in the repression of a multitude of c1-controlled operators in the P1 genome.  相似文献   

3.
Bacteriophage P1 encodes several regulatory elements for the lytic or lysogenic response, which are located in the immC, immI, and immT regions. Their products are the C1 repressor of lytic functions with the C1 inactivator protein Coi, the C4 repressor of antirepressor synthesis and the modulator protein Bof, respectively. We have studied in vitro the interaction of the components of the immC and immT regions with C1-controlled operators using highly purified Bof, C1, and Coi proteins. Bof protein (M(r) = 9,800) does not interact with C1 repressor alone, but as shown by DNA mobility shift experiments, in the presence of C1 repressor Bof binds to all operators tested by forming a C1.Bof-operator DNA ternary complex. The effect of this complex formation was studied in more detail with the operator of the c1 gene. Here, Bof only marginally alters the C1 repressor footprint at Op99a,b, but nevertheless considerably influences the repressibility of the operator.promoter element: (i) the autoregulated c1 mRNA synthesis is further down-regulated and (ii) the ability of Coi protein to dissociate the C1.operator DNA complex is strongly inhibited. We suggest that Bof protein functions by modulating C1 repression of many widely dispersed operators on the prophage genome.  相似文献   

4.
The temperate phage P1 encodes two genes whose products antagonize the action of the phage's C1 repressor of lytic functions, namely a distantly linked antirepressor gene, ant, and a closely linked c1 inactivator gene, coi. Starting with an inducible coi-recombinant plasmid, Coi protein was overproduced and purified to near homogeneity. By using a DNA mobility shift assay we demonstrate that Coi protein inhibits the operator binding of the C1 repressors of the closely related P1 and P7 phages. Coi protein (Mr = 7,600) exerts its C1-inactivating function by forming a complex with the C1 repressor (Mr = 32,500) at a molar ratio of about 1:1, as shown by density gradient centrifugation and gel filtration. C1 repressor and Coi protein are recovered in active form from the complex, suggesting that noncovalent interactions are the sole requirements for complex formation. The interplay of repressor and antagonists operating in the life cycle of P1 is discussed.  相似文献   

5.
Structure and regulation of the lytic replicon of phage P1   总被引:10,自引:0,他引:10  
  相似文献   

6.
The immC region of bacteriophage P1 contains the c1 repressor gene and its upstream region with four c1-controlled operators and four open reading frames. A c1 inactivator gene, coi, was defined by mutations in immC that suppress the virulence of the P1virC mutation. The exact location of the coi gene was not known (Scott, J.R. (1980) Curr. Top. Microbiol. Immunol. 90, 49-65). When a variety of P1 immC fragments were inserted into an expression vector, a gene product was inducible for the open reading frame 4 only. We identify this product as the c1 inactivator protein, coi by the following criteria: (a) expression of coi from a recombinant plasmid induces the P1 prophage and inhibits lysogenization of sensitive bacteria by P1; (b) all c1-controlled operator-promoter elements tested in vivo are derepressed by coi; (c) a partially purified coi protein (apparent molecular weight = 4800) interacts with c1 repressor and inhibits its binding to the operator in vitro. Based on these results we refine a model for the regulation of those genes and elements within immC which participate in the decision of P1 to enter the lytic or lysogenic pathway.  相似文献   

7.
8.
Despite the extensive genetic analysis of bacteriophage P1, the region of the viral genome that is responsible for its lytic (vegetative) replication has not been identified. In this paper we describe the identification of various fragments of P1 DNA that can replicate an otherwise replication-defective lambda vector when they are cloned into that vector. The fragments share a 2800 base-pair segment of the P1 genome that is located adjacent to the immI region of the phage. Replication mediated by the cloned P1 fragments is abolished by the product of the P1 c1 gene, the repressor of phage lytic functions. Since these properties resemble those of the P1 lytic replicon, we suggest that the 2800 base-pair segment identified here contains that replicon.  相似文献   

9.
《FEMS microbiology letters》1998,165(1):193-200
Deletion of a region of DNA 5′ to a previously characterised malQ gene of Clostridium butyricum resulted in increased production of the enzyme activity encoded by malQ, 4-α-glucanotransferase. Nucleotide sequence analysis revealed the presence of an open reading frame capable of encoding a protein of 335 amino acids. This protein was found to share 33% amino acid sequence identity with the Bacillus subtilis CcpA (catabolite control protein) repressor, 28% identity with the Streptomyces coelicolor MalR repressor, and 30%, 25%, and 21% amino acid identity with the Escherichia coli repressors GalR, LacI and MalI, respectively. The amino-terminal domain was predicted to be able to form a helix-turn-helix structure, and shared highest similarity with the equivalent functional domain from the E. coli LacI repressor. Interruption of malR by the generation of a frameshift mutation led to a 10-fold increase in MalQ activity. These data suggest that the identified open reading frame encodes a repressor of the C. butyricum malQ gene, and of the adjacent malP gene. The gene has, therefore, been designated malR, and its encoded gene product MalR.  相似文献   

10.
11.
12.
The c4 repressors of the temperate bacteriophages P1 and P7 inhibit antirepressor synthesis and are essential for establishment and maintenance of lysogeny. Using in vivo complementation tests we have previously shown that c4 is an antisense RNA acting on a target, ant mRNA, which is transcribed from the same promoter. Here we identify the c4 repressor molecule of P1 as a 77 +/- 1 base RNA by mapping its termini and show that the c4 RNA in P7 lysogens has the same or a similar size. P1 c4 RNA is encoded in a region shown to be sufficient for c4 complementation. It covers exactly the 74 bases previously suggested to fold into a stem-loop secondary structure essential for c4 function. Furthermore, we demonstrate that the 5' end of c4 RNA is generated by processing. Thus, c4 is the first example of an antisense RNA to be processed. A possible mechanism of processing is discussed.  相似文献   

13.
The C1 repressor of bacteriophage P1 acts via 14 or more distinct operators. This repressor represses its own synthesis as well as the synthesis of other gene products. Previously, mutation of an auxiliary regulatory gene, bof, has been shown to increase expression of some C1-regulated P1 genes (e.g., ref) but to decrease expression of others (e.g., ban). In this study the bof gene was isolated on the basis of its ability to depress stimulation of Escherichia coli chromosomal recombination by the P1 ref gene, if and only if a source of C1 was present. C1 alone, but not Bof alone, was partially effective. The bofDNA sequence encodes an 82-codon reading frame that begins with a TTG codon and includes the sites of the bof-1(Am) mutation and a bof::Tn5 null mutation. Expression of ref::lacZ and cl::lacZ fusion genes was partially repressed in trans by a P1 bof-1 prophage or by plasmid-encoded C1 alone, which was in agreement with effects on Ref-stimulated recombination and with previous indirect evidence for c1 autoregulation. Repression of both fusion genes by plasmid-encoded C1 plus Bof or by a P1 bof+ prophage was more complete. When the C1 source also included a 0.7-kilobase region upstream from C1 which encodes the coi gene, repression of both c1::lacZ and ref::lacZ by C1 alone or by C1 plus Bof was much less effective, as if Coi interfered with C1 repressor function.  相似文献   

14.
The c1 repressor gene of bacteriophage P1 and the temperature-sensitive mutants P1c1.100 and P1c1.162 was cloned into an expression vector and the repressor proteins were overproduced. A rapid purification procedure was required for the isolation of the thermolabile repressor proteins. Identification of the highly purified protein of an apparent molecular weight of 33,000 as the product of the c1 gene was verified by (i) the coincidence of partial amino acid sequences determined experimentally to that deduced from the c1 DNA sequence, and (ii) the temperature-sensitive binding to the operator DNA of the thermolabile repressor proteins. Analysis of the products of c1-c1.100 recombinant DNAs relates the thermolability to an unknown alteration in the C-terminal half of the c1.100 repressor. Binding to the operator DNA of c1 repressor is sensitive to N-ethylmaleimide. Since the only three cysteine residues are located in the C-terminal half of the repressor it is suggested that this part of the molecule is important for the binding to the operator DNA. This assumption is supported by the findings that a 14-kDa C-terminal repressor fragment obtained by cyanogen bromide cleavage retains DNA binding properties.  相似文献   

15.
The ALL-1 gene located at human chromosome 11 band q23 is rearranged in acute leukemias with interstitial deletions or reciprocal translocations between this region and chromosomes 1, 4, 6, 9, 10, or 19. The gene spans approximately 100 kb of DNA and contains at least 21 exons. It encodes a protein of more than 3910 amino acids containing three regions with homology to sequences within the Drosophila trithorax gene, including cysteine-rich regions that can be folded into six zinc finger-like domains. The breakpoint cluster region within ALL-1 spans 8 kb and encompasses several small exons, most of which begin in the same phase of the open reading frame. The t(4;11) chromosome translocation results in two reciprocal fusion products coding for chimeric proteins derived from ALL-1 and from a gene on chromosome 4. This suggests that each 11q23 abnormality gives rise to a specific oncogenic fusion protein.  相似文献   

16.
17.
18.
19.
The repressor of bacteriophage P1, encoded by the c1 gene, is responsible for maintaining a P1 prophage in the lysogenic state. In this paper we present: (1) the sequence of the rightmost 943 base-pairs of the P1 genetic map that includes the 5'-terminal 224 base-pairs of the c1 gene plus its upstream region; (2) the construction of a plasmid that directs the production of approximately 5% of the cell's protein as P1 repressor; (3) a deletion analysis that establishes the startpoint of P1 repressor translation; (4) filter binding experiments that demonstrate that P1 repressor binds to several regions upstream from the c1 gene; (5) DNase I footprint experiments that directly identify two of the P1 repressor binding sites. Sequences very similar to the identified binding sites occur in at least 11 sites in P1, in most cases near functions known, or likely, to be controlled by repressor. From these sites we have derived the consensus binding site sequence ATTGCTCTAATAAATTT. We suggest that, unlike other phage operators, the P1 repressor binding sites lack rotational symmetry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号