首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The adaptor protein (AP) complexes AP-1, AP-2, and AP-3 mediate coated vesicle formation and sorting of integral membrane proteins in the endocytic and late exocytic pathways in mammalian cells. A search of the Drosophila melanogaster expressed sequence tag (EST) database identified orthologs of family members mammalian medium (μ) chain families μ1, μ2, and μ3, of the corresponding AP complexes, and δ-COP, the analogous component of the coatomer (COPI) complex. The Drosophila orthologs exhibit a high degree of sequence identity to mammalian medium chain and δ-COP proteins. Northern analysis demonstrated that medium chain and δ-COP mRNAs are expressed uniformly throughout fly development. Medium chain and δ-COP genes were cytologically mapped and the μ3 gene was found to localize to a region containing the pigmentation locus carmine (cm). Analysis of genomic DNA of the cm 1 mutant allele indicated the presence of a large insertion in the coding region of the μ3 gene and Northern analysis revealed no detectable μ3 mRNA. Light microscopy of the cm 1 mutant showed a reduction in primary, secondary, and tertiary pigment granules in the adult eye. These findings provide evidence of a role for μ3 in the sorting processes required for pigment granule biogenesis in Drosophila.  相似文献   

3.
The protein mu1B is a member of the medium chain family of the clathrin-associated adaptor complex and is expressed exclusively in epithelial cells. We determined the genomic structure of previously cloned murine genes for mu1B (Ap1m2) and its closely related homolog, mu1A (Ap1m1). Comparison of their genomic structures revealed that the positions of introns are identical between these two genes, except for the insertion of an additional intron in Ap1m1 (intron 4). By contrast, these structures are different from that of the more distantly related Ap2m1 gene encoding mu2. Taken together with the similarity of amino acid sequences among these genes, the data presented in this study suggest that Ap1m1/2 and Ap2m1 diverged long before the separation of Ap1m1 and Ap1m2, which most likely resulted from a relatively recent gene duplication. We also mapped AP1M2 to human chromosome 19p13.2 and Ap1m2 to the proximal region of mouse chromosome 9. The results are consistent with the fact that these regions are syntenic.  相似文献   

4.
Engagement of cell-surface receptors leads to activation of protein tyrosine kinases, which in turn phosphorylate various downstream enzymes and adaptor proteins. Lnk is an adaptor protein that appears to be involved in signal transduction in lymphocytes, and forms an adaptor protein family with SH2-B. We tried to identify another member of the adaptor protein family and isolated the mouse APS (adaptor molecule containing PH and SH2 domains). APS contains a proline-rich region, PH and SH2 domains, and a putative tyrosine phosphorylation site at the C-terminal, and the overall structure resembles those of Lnk and SH2-B. APS is expressed in brain, kidney, muscle, and mature B cells in spleen. Mouse APS gene consists of 8 coding exons and is deduced to map to chromosome 5. APS is tyrosine phosphorylated at the C-terminal phosphorylation site conserved among the Lnk family adaptor proteins by stimulation of IL-5 or IL-3 as well as by crosslinking of B cell receptor complex. These results suggest that APS is a member of the Lnk family adaptor protein and likely plays a role in signaling in B cells.  相似文献   

5.
The adaptor protein (AP) complexes AP-1, AP-2, and AP-3 mediate coated vesicle formation and sorting of integral membrane proteins in the endocytic and late exocytic pathways in mammalian cells. A search of the Drosophila melanogaster expressed sequence tag (EST) database identified orthologs of family members mammalian medium (μ) chain families μ1, μ2, and μ3, of the corresponding AP complexes, and δ-COP, the analogous component of the coatomer (COPI) complex. The Drosophila orthologs exhibit a high degree of sequence identity to mammalian medium chain and δ-COP proteins. Northern analysis demonstrated that medium chain and δ-COP mRNAs are expressed uniformly throughout fly development. Medium chain and δ-COP genes were cytologically mapped and the μ3 gene was found to localize to a region containing the pigmentation locus carmine (cm). Analysis of genomic DNA of the cm 1 mutant allele indicated the presence of a large insertion in the coding region of the μ3 gene and Northern analysis revealed no detectable μ3 mRNA. Light microscopy of the cm 1 mutant showed a reduction in primary, secondary, and tertiary pigment granules in the adult eye. These findings provide evidence of a role for μ3 in the sorting processes required for pigment granule biogenesis in Drosophila. Received: 7 June 1999 / Accepted: 4 July 1999  相似文献   

6.
FKBP-12 is the major T cell binding protein for the immunosuppressive drugs FK506 and rapamycin. It is a member of the immunophilin family of proteins which are believed to play a role in immunoregulation and basic cellular processes involving protein folding and trafficking. The chromosomal assignment of the human FKBP-12 gene was determined by using the polymerase chain reaction to amplify an intron-containing region of the gene in purified DNA isolated from 42 human-rodent somatic cell hybrids. The results of this analysis indicated that the FKBP-12 gene resides on human chromosome 20.  相似文献   

7.
8.
9.
10.
11.
Macrophage colony stimulating factor (CSF-1) is a member of a family of glycoproteins that are necessary for the normal proliferation and differentiation of myeloid progenitor cells. The human CSF-1 gene has previously been assigned to chromosome 5 using somatic cell hybrids, and further localized to 5q33 by in situ hybridization with a 3H labelled cDNA probe. However, the murine macrophage colony stimulating factor gene (csfm) has been localized to a region on mouse chromosome 3 which was previously shown to be syntenic with the proximal region of 1p and not 5q. Using a human genomic DNA clone that contains the CSF-1 gene, we have localized CSF-1 to chromosome 1p13-21 by fluorescence in situ hybridization. The reassignment of the CSF-1 gene argues against its involvement in myeloid disorders with deletions of the long arm of chromosome 5.  相似文献   

12.
Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type–specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo. Yeast have two forms of AP-1, which differ only in the μ chain. Here we show that the variant μ chain Apm2 confers distinct cargo-sorting functions. Loss of Apm2, but not of Apm1, increases cell surface levels of the v-SNARE Snc1. However, Apm2 is unable to replace Apm1 in sorting Chs3, which requires a dileucine motif recognized by the γ/σ subunits common to both complexes. Apm2 and Apm1 colocalize at Golgi/early endosomes, suggesting that they do not associate with distinct compartments. We identified a novel, conserved regulatory protein that is required for Apm2-dependent sorting events. Mil1 is a predicted lipase that binds Apm2 but not Apm1 and contributes to its membrane recruitment. Interactions with specific regulatory factors may provide a general mechanism to diversify the functional repertoire of clathrin adaptor complexes.  相似文献   

13.
14.
Recognition of sorting signals within the cytoplasmic tail of membrane proteins by adaptor protein complexes is a crucial step in membrane protein sorting. The three known adaptor complexes, AP1, AP2, and AP3, have all been shown to recognize tyrosine- and leucine-based sorting signals, which are the most common sorting signals within membrane protein cytoplasmic tails. Although tyrosine-based signals are recognized by the micro-chains of adaptor complexes, the subunit recognizing leucine-based sorting signals is less clear. In this report we show by surface plasmon resonance that the two leucine-based sorting signals within the cytoplasmic tail of the invariant chain bind independently from each other to AP1 and AP2 but not to AP3. We also show that both motifs can be recognized by the micro-chains of AP1 and AP2. Moreover, by using monomeric as well as trimeric invariant chain constructs, we show that adaptor binding does not require trimerization of the invariant chain.  相似文献   

15.
16.
A gene family encompassing a minimum of four genes or pseudogenes for gamma-glutamyl transferase (GGT; EC 2.3.2.2) is present on chromosome 22q11. We have previously isolated a cDNA related to GGT but clearly not belonging to its gene family. The chromosomal location of this related gene, GGTLA1, has been determined by both isotopic and fluorescence in situ hybridization to metaphase cells and by Southern blot analysis of somatic cell hybrid DNAs. We show that GGTLA1 is part of a distinct gene family, which has at least four members (GGTLA1, GGTLA2, GGTLA3, GGTLA4). At least two loci are located on chromosome 22 within band q11 and proximal to the chronic myelogenous leukemia (CML) breakpoint in BCR (breakpoint cluster region gene). At least one other member is located more distally between the breakpoints found in Ewings sarcoma and CML. Some of the GGT and GGTLA family members are located on NotI restriction enzyme fragments of a similar size. Combined results indicate that a segment of human chromosome 22q11 has undergone largescale amplification events relatively recently in evolution.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号