首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated three strains of Klebsiella aerogenes that failed to show repression of glutamine synthetase even when grown under the most repressing conditions for the wild-type strain. These mutant strains were selected as glutamine-independent derivatives of a strain that is merodiploid for the glnA region and contains a mutated glnF allele. The mutation responsible for the Gln+ phenotype in each strain was tightly linked to glnA, the structural gene for glutamine synthetase, and was dominant to the wild-type allele. These mutations are probably lesions in the control region of the glnA gene, since each mutation was cis-dominant for constitutive expression of the enzyme in hybrid merodiploid strains. Strains harboring this class of mutations were unable to produce a high level of glutamine synthetase unless they also contained an intact glnF gene, and unless cells were grown in derepressing medium. This study supports the idea that the glnA gene is regulated both positively and negatively, and that the deoxyribonucleic acid sites critical for positive control and negative control are functionally distinct.  相似文献   

2.
M R Atkinson  L V Wray  Jr    S H Fisher 《Journal of bacteriology》1993,175(14):4282-4289
During growth of Bacillus subtilis in nutrient sporulation medium containing histidine (DSM-His medium), the expression of histidase, the first enzyme in the histidine-degradative pathway (hut), is derepressed 40- to 200-fold at the onset of stationary phase. To identify the gene products responsible for this regulation, histidase expression was examined in various hut regulatory mutants as well as in mutants defective in stationary-phase gene regulation. Histidase expression during growth in DSM-His medium was significantly altered only in a strain containing the hutC1 mutation. The hutC1 mutation allows the hut operon to be expressed in the absence of its inducer, histidine. During logarithmic growth in DSM-His medium, histidase levels were 25-fold higher in the HutC mutant than in wild-type cells. Moreover, histidase expression in the HutC mutant increased only four- to eightfold after the end of exponential growth in DSM-His medium. This suggests that histidine transport is reduced in wild-type cells during exponential growth in DSM-His medium and that this reduction is largely responsible for the repression of hut expression in cells growing logarithmically in this medium. Indeed, the rate of histidine uptake in DSM-His medium was fourfold lower in exponentially growing cells than in stationary-phase cells. The observation that the degradation of histidine is inhibited when B. subtilis is growing rapidly in medium containing a mixture of amino acids suggests that a hierarchy of amino acid utilization may be present in this bacterium.  相似文献   

3.
Previous studies showed that when triazolalanine was added to a derepressed culture of a histidine auxotroph, repression of the histidine operon occurred as though histidine had been added (6). However, when triazolalanine was added to a derepressed culture of a strain with a mutation in the first gene of the histidine operon which rendered the first enzyme for histidine biosynthesis resistant to inhibition by histidine, repression did not occur. The studies reported here represent a cis/trans test of this effect of mutations to feedback resistance. Using specially constructed merodiploid strains, we were able to show that the wild-type allele is dominant to the mutant (feedback resistant) allele and that the effect operates in trans. We conclude that the enzyme encoded by the first gene of the histidine operon exerts its regulatory effect on the operon not by acting locally at its site of synthesis, but by acting as a freely diffusible protein.  相似文献   

4.
Subunit assembly and metabolic stability of E. coli RNA polymerase   总被引:1,自引:0,他引:1  
Immunological cross-reaction was employed for identification of proteolytic fragments of E. coli RNA polymerase generated both in vitro and in vivo. Several species of partially denatured but assembled RNA polymerase were isolated, which were composed of fragments of the two large subunits, beta and beta', and the two small and intact subunits, alpha and sigma. Comparison of the rate and pathway of proteolytic cleavage in vitro of unassembled subunits, subassemblies, and intact enzymes indicated that the susceptibility of RNA polymerase subunits to proteolytic degradation was dependent on the assembly state. Using this method, degradation in vivo was found for some, but not all, of the amber fragments of beta subunit in merodiploid cells carrying both wild-type and mutant rpoB genes. Although the RNA polymerase is a metabolically stable component in exponentially growing cells of E. coli, degradation of the full-sized subunits was found in two cases, i.e., several temperature-sensitive E. coli mutants with a defect in the assembly of RNA polymerase and the stationary-phase cells of a wild-type E. coli. The in vivo degradation of RNA polymerase was indicated to be initiated by alteration of the enzyme structure.  相似文献   

5.
The first enzyme for histidine biosynthesis, encoded in the hisG gene, is involved in regulation of expression of the histidine operon in Salmonella typhimurium. The studies reported here concern the question of how expression of the histidine operon is affected by a mutation in the hisG gene that alters the allosteric site of the first enzyme for histidine biosynthesis, rendering the enzyme completely resistant to inhibition by histidine. The intracellular concentrations of the enzymes encoded in the histidine operon in a strain carrying such a mutation on an episome and missing the chromosomal hisG gene are three- to fourfold higher than in a strain carrying a wild-type hisG gene on the episome. The histidine operon on such a strain fails to derepress in response to histidine limitation and fails to repress in response to excess histidine. Furthermore, utilizing other merodiploid strains, we demonstrate that the wild-type hisG gene is trans dominant to the mutant allele with respect to this regulatory phenomenon. Examination of the regulation of the histidine operon in strains carrying the feedback-resistant mutation in an episome and hisT and hisW mutations in the chromosome showed that the hisG regulatory mutation is epistatic to the hisT and hisW mutations. These data provide additional evidence that the first enzyme for histidine biosynthesis is involved in autogenous regulation of expression of the histidine operon.  相似文献   

6.
7.
Antipolarity in the ilv operon of Escherichia coli K-12   总被引:9,自引:7,他引:2       下载免费PDF全文
The genes governing three of the enzymes of the isoleucine-valine biosynthetic pathway form the operon: operator-ilvA-ilvD-ilvE. The enzymes are: ilvA, l-threonine deaminase; ilvD, dihydroxy acid dehydrase; and ilvE, transaminase B. A nonsense mutation in the ilvD gene (D-ochre) and a nonsense mutation in the ilvE gene (E-amber) affect the properties of the proximal gene product, l-threonine deaminase (TD), in addition to inactivating the enzymes produced by the genes in which the mutations have occurred. The D-ochre mutation causes TD to move in diffusion and gel filtration experiments as though it were 30% smaller than the wild-type enzyme. The E-amber mutation causes TD to move in similar experiments as though it were much larger than the wild-type enzyme. Both mutations completely abolish the sensitivity of TD to l-isoleucine, the normal feedback inhibitor of the wild-type enzyme. The effects of the nonsense mutations on TD can be reversed in three ways: by genetic reversion of the D-ochre mutation; by treatment of the altered enzymes with 3.0 m urea; and by forming a heterozygous diploid, containing the wild-type allele as well as the mutant allele of ilvD or ilvE. The results suggest that the subunits of TD undergo abnormal aggregation in the presence of the partial polypeptides produced by the mutant alleles of ilvD or ilvE; multi-enzyme aggregates in extracts of wild type, however, could not be detected.  相似文献   

8.
Histidine ammonia-lyase (histidase) was purified to homogeneity from vegetative mycelia of Streptomyces griseus. The enzyme was specific for L-histidine and showed no activity against the substrate analog, D-histidine. Histidinol phosphate was a potent competitive inhibitor. Histidase displayed saturation kinetics with no detectable sigmoidal response. Neither thiol reagents nor a variety of divalent cations had any effect on the activity of the purified enzyme. High concentrations of potassium cyanide inactivated histidase in the absence of its substrate or histidinol phosphate, suggesting that, as in other histidases, dehydroalanine plays an important role in catalysis. The N-terminal amino acid sequence of histidase was used to construct a mixed oligonucleotide probe to identify and clone the histidase structural gene, hutH, from genomic DNA of the wild-type strain of S. griseus. The cloned DNA restored the ability of a histidase structural gene mutant to grow on L-histidine as the sole nitrogen source. The deduced amino acid sequence of hutH shows significant relatedness with histidase from bacteria and a mammal as well as phenylalanine ammonia-lyase from plants and fungi.  相似文献   

9.
A hybrid hsdS gene, encoding the HsdSts + d polypeptide, was constructed by joining the proximal region of the wild-type (wt) hsdS sequence with the distal region of the hsdSts + d sequence, at the hsdS BglII site. The hybrid hsdS-Sts + d gene exerts a trans-dominant effect on restriction and modification, which points to the location of the temperature-sensitive (ts) trans-dominant (+ d) mutation in the gene hsdSts + d distal region. Sequencing of the region downstream from the HindIII target in the Escherichia coli K-12 hsdSts + d mutant was carried out. It is identical to the wt hsdS sequence (GenBank/EMBL accession number ECHSDK LV00288), except for a single base-pair transition C1245----T. The results obtained support the idea that the trans-dominant effect of the ts mutation described earlier is related to the single base-pair transition in the nonhomologous region of the hsdSts + d sequence.  相似文献   

10.
The replicative polymerase of Escherichia coli, DNA polymerase III, consists of a three-subunit core polymerase plus seven accessory subunits. Of these seven, tau and gamma are products of one replication gene, dnaX. The shorter gamma is created from within the tau reading frame by a programmed ribosomal -1 frameshift over codons 428 and 429 followed by a stop codon in the new frame. Two temperature-sensitive mutations are available in dnaX. The 2016(Ts) mutation altered both tau and gamma by changing codon 118 from glycine to aspartate; the 36(Ts) mutation affected the activity only of tau because it altered codon 601 (from glutamate to lysine). Evidence which indicates that, of these two proteins, only the longer tau is essential includes the following. (i) The 36(Ts) mutation is a temperature-sensitive lethal allele, and overproduction of wild-type gamma cannot restore its growth. (ii) An allele which produced tau only could be substituted for the wild-type chromosomal gene, but a gamma-only allele could not substitute for the wild-type dnaX in the haploid state. Thus, the shorter subunit gamma is not essential, suggesting that tau can be substitute for the usual function(s) of gamma. Consistent with these results, we found that a functional polymerase was assembled from nine pure subunits in the absence of the gamma subunit. However, the possibility that, in cells growing without gamma, proteolysis of tau to form a gamma-like product in amounts below the Western blot (immunoblot) sensitivity level cannot be excluded.  相似文献   

11.
Mutations at multiple sites within the simian virus 40 (SV40) early region yield large T antigens which interfere trans dominantly with the replicative activities of wild-type T antigen. A series of experiments were conducted to study possible mechanisms of interference with SV40 DNA replication caused by these mutant T antigens. First, the levels of wild-type T antigen expression in cells cotransfected with wild-type and mutant SV40 DNAs were examined; approximately equal levels of wild-type T antigen were seen, regardless of whether the cotransfected mutant was trans dominant or not. Second, double mutants that contained the mutation of inA2827, a strong trans-dominant mutation with a 12-bp linker inserted at the position encoding amino acid 520, and various mutations in other parts of the large-T-antigen coding region were constructed. The trans-dominant interference of inA2827 was not affected by second mutations within the p105Rb binding site or the amino or carboxy terminus of large T antigen. Mutation of the nuclear localization signal partially reduced the trans dominance of inA2827. The large T antigen of mutant inA2815 contains an insertion of 4 amino acids at position 168 of large T; this T antigen fails to bind SV40 DNA but is not trans dominant for DNA replication. The double mutant containing the mutations of both inA2815 and in A2827 was not trans dominant. The large T antigen of dlA2433 lacks amino acids 587 to 589, was unstable, and failed to bind p53. Combining the dlA2433 mutation with the inA2827 mutation also reversed the trans dominance completely, but the effect of the dlA2433 mutation on trans dominance can be explained by the instability of this double mutant protein. In addition, we examined several mutants with conservative point mutations in the DNA binding domain and found that most of them were not trans dominant. The implications of the results of these experiments on possible mechanisms of trans dominance are discussed.  相似文献   

12.
An Escherichia coli K12 chromosomal EcoRI-BamHI fragment containing a mutant hsdS locus was cloned into plasmid pBR322. The mcrB gene, closely linked to hsdS, was used for selection of clones with the inserted fragment using T4 alpha gt57 beta gt14 and lambda vir. PvuII phages; the phage DNAs contain methylated cytosines and hence can be used to demonstrate McrB restriction. For the efficient expression of the hsdS gene, a BglII fragment of phage lambda carrying the pR promoter was inserted into the BamHI site of the hybrid plasmid. Under these conditions a trans-dominant effect of the hsdXts+d mutation on restriction and modification was detected. Inactivation of the hsdS gene by the insertion of the lambda phage BglII fragment into the BglII site within this gene resulted in the disappearance of the trans-dominant effect. When the cloned BamHI-EcoRI fragment was shortened by HpaI and EcoRI restriction enzymes, the trans-dominant effect was fully expressed. The results indicate that the Xts+d mutation is located in the hsdS gene. The effect of gene dosage of the HsdS subunit on the expression of Xts+d mutation was studied. The results of complementation experiments, using F'-merodiploids or plasmid pBR322 with an inserted Xts+d mutation, support the idea that the HsdSts+d product competes with the wild-type HsdS product, and has a quantitatively different effect on restriction and modification.  相似文献   

13.
Rhodobacter sphaeroides cells containing an in-frame deletion within ccmA lack detectable soluble and membrane-bound c-type cytochromes and are unable to grow under conditions where these proteins are required. Only strains merodiploid for ccmABCDG were found after attempting to generate cells containing either a ccmG null mutation or a ccmA allele that should be polar on to expression of ccmBCDG, suggesting that CcmG has another important role in R. sphaeroides.  相似文献   

14.
Two super-repressor mutations in the histidine utilization (hut) operons of Salmonella typhimurium are described. Cells bearing either of these mutations have levels of hut enzymes that do not increase above the uninduced levels when growth is in the presence of either histidine or the gratuitous inducer imidazole propionate. Both mutations lie in the region of the gene for the hut repressor, hutC, and reverse mutations of both are to the constitutive (repressor-negative) rather than to the inducible (wild type) phenotype. In hybrid merodiploid strains the super-repressor mutations are dominant over either wild-type (hutC+) or repressor-negative (hutC-) alleles. Whereas both super-repressor mutations cause the uninducible synthesis of hut enzymes, the degree of repression is different. One mutation causes repression of enzyme synthesis in one of the two hut operons to a level below the basal, uninduced level of wild-type cells. The other mutation causes repression to a lesser degree than in wild-type cells, so that the hut enzymes are present at a level above the normal basal level; this partially constitutive synthesis is greater for the enzymes of one of the hut operons than for the enzymes of the other. Thus, both mutations apparently result in repressors with altered operator-binding properties, in addition to altered inducer-binding properties.  相似文献   

15.
In contrast to wild-type cells, the Bacillus subtilis mutant SF109 that lacks the active 2-ketoglutarate dehydrogenase enzymatic complex is unable to increase the specific activity of two enzymes subject to glucose catabolite repression, aconitase and histidase, during limitation of growth by glucose. Examination of the intracellular metabolite pools in the mutant and wild-type cells grown in excess and limiting glucose medium showed that the complete derepression of aconitase and histidase could be correlated with the decrease in the intracellular concentration of 2-ketoglutarate. The complete repression of aconitase that occurred in wild-type and mutant cells could be correlated with a high intracellular concentration of 2-ketoglutarate.  相似文献   

16.
Summary The regulation of synthesis of arg enzymes was studied in a hybrid merodiploid in which an episome of Escherichia coli carrying the argR + allele was transferred to a Salmonella typhimurium argR strain. The arg enzyme levels of the hybrid merodiploid were compared to that found in argR and argR + haploids of S. typhimurium. The results showed that repression of synthesis of arg enzymes was effected through the introduction of the E. coli argR + allele but significant quantitative differences of arg enzyme levels in the argR + haploid and the hybrid merodiploid were observed.  相似文献   

17.
Histidase (histidine ammonia-lyase, EC 4.3.1.3) catalyzes the deamination of histidine to urocanic acid. Apart from phenylalanine ammonia-lyase, which is not expressed in animals, histidase is the only enzyme known to have a dehydroalanine residue in its active site. The amino site precursor and the mechanism of formation of dehydroalanine are not known. As an initial step to determining the precursor of dehydroalanine in histidase, we have isolated a functional cDNA clone for histidase from a rat liver cDNA library using an affinity-purified antiserum. The 2.2-kilobase cDNA has a 1,971-base pair open reading frame coding for a 657-amino acid polypeptide with a predicted molecular mass of 72,165 Da. The cDNA has a rare polyadenylation signal (AAUACA) that appears to inefficiently direct polyadenylation in transfected COS monkey kidney cells. Conversion of this sequence to the consensus polyadenylation signal (AAUAAA) resulted in increased levels of stable mRNA. COS cells transfected with a histidase expression vector produce active histidase. The formation of active histidase in cells that have no endogenous histidase activity suggests either that the requisite modifying enzyme is present in these cells or that the dehydroalanine residue forms by an autocatalytic mechanism. Rat histidase was found to have 41 and 43% amino acid identity to Pseudomonas putida and Bacillus subtilis histidases, respectively. Phenylalanine ammonia-lyases from parsley, kidney bean, and two yeast strains were also found to have approximately 20% amino acid identity to rat histidase. On the basis of the similarity of function of histidase and phenylalanine ammonia-lyase, dehydroalanine at the active sites, and the sequence conservation over a large evolutionary distance (mammals, bacteria, yeast, and plants), we propose that the genes for histidase and phenylalanine ammonia-lyase have diverged from a common ancestral gene, of which the most conserved regions are likely to be involved in catalysis or dehydroalanine formation.  相似文献   

18.
Cascading regulation of histidase activity in Streptomyces griseus.   总被引:2,自引:2,他引:0       下载免费PDF全文
Mutants of Streptomyces griseus unable to utilize histidine as the sole nitrogen source have been isolated and characterized. Using a mutant defective in the production of histidase, we have demonstrated that urocanate functions as the inducer of the histidine utilization system. Another mutant produced histidase that was locked in an inactive form but could be activated by treatment with an extract from the wild-type strain or the histidase-negative strain. This mutant was deficient in the activity of a protein of Mr ca. 90,000 to 100,000 that is required for the activation of histidase. Histidase was synthesized constitutively but was maintained in an inactive form until after histidine or urocanate was added to the medium. At least four components were implicated in the activation of histidase: histidase, the activation protein, urocanate, and a phosphatase that is apparently inactive in cells grown without inducer. The functions of the last three factors could be supplanted in vitro by incubation of histidase with snake venom phosphodiesterase or 5' nucleotidase. The results suggest that histidine utilization by S. griseus is controlled posttranslationally by an activation cascade that involves at least two regulatory proteins.  相似文献   

19.
To explore the molecular etiology of two disorders caused by a defect in GTP cyclohydrolase I--hereditary progressive dystonia with marked diurnal fluctuation (HPD), also known as dopa-responsive dystonia (DRD), and autosomal recessive GTP cyclohydrolase I deficiency--we purified and analyzed recombinant human wild-type and mutant GTP cyclohydrolase I proteins expressed in Escherichia coli. Mutant proteins showed very low enzyme activities, and some mutants were eluted at a delayed volume on gel filtration compared with the recombinant wild-type. Next, we examined the GTP cyclohydrolase I protein amount by western blot analysis in phytohemagglutinin-stimulated mononuclear blood cells from HPD/DRD patients. We found a great reduction in the amount of the enzyme protein not only in one patient who had a frameshift mutation, but also in an HPD/DRD patient who had a missense mutation. These results suggest that a dominant-negative effect of chimeric protein composed of wild-type and mutant subunits is unlikely as a cause of the reduced enzyme activity in HPD/DRD patients. We suggest that reduction of the amount of the enzyme protein, which is independent of the mutation type, could be a reason for the dominant inheritance in HPD/DRD.  相似文献   

20.
The Tat protein of the human immunodeficiency virus type 1 (HIV-1) is required for efficient viral gene expression. By means of mutational analyses, several domains of the Tat protein that are required for complete activation of HIV-1 gene expression have been defined. These include an amino-terminal activating domain, a cysteine-rich dimerization domain, and a basic domain important in the binding of Tat to the trans-activation response element (TAR) and in Tat nuclear localization. Recently, we described a mutation, known as delta tat, which resulted in a protein with a truncated basic domain. This protein had a "trans-dominant" phenotype in that it inhibited wild-type Tat activation of the HIV-1 LTR. To further characterize the requirements for generating a Tat trans-dominant phenotype, we constructed a variety of Tat proteins with truncations or substitutions in the basic domain. A number of these proteins showed a trans-dominant phenotype. These Tat mutants also inhibited activation of the HIV-1 LTR by a protein composed of Tat fused to the prokaryotic R17 (phage MS2) RNA-binding protein in which the R17 recognition element was inserted in the HIV-1 LTR in place of TAR. Thus, an intact TAR element was not required for this inhibition. We also studied the cellular localization of Tat and a trans-dominant Tat mutant by means of immunofluorescence staining with the use of antibodies reactive to different domains of the Tat protein. The results indicated that Tat becomes localized predominantly in the nucleus both in the presence and absence of the trans-dominant Tat construct, suggesting that the trans-dominant mutant does not inhibit Tat nuclear localization. These studies further define the requirements for the creation of trans-dominant Tat mutants, and suggest that the mechanism of trans-dominant Tat inhibition may be either the formation of an inactive complex between wild-type and mutant Tat or sequestration of cellular factors involved in regulating HIV-1 gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号