首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this work we have used fluorescence spectroscopic approaches to examine the binding of the beta gamma T subunit complex of transducin to the photoreceptor, rhodopsin. To do this, we have covalently labeled the beta gamma T subunit complex with the environmentally sensitive fluorescent cysteine reagent 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS). By using the MIANS moiety as a fluorescent reporter group, we were able to monitor directly the binding of the MIANS-beta gamma T complex to light-activated rhodopsin, which was reconstituted into phosphatidylcholine vesicles, through an enhancement (30-50%) in the MIANS fluorescence. Phosphatidylcholine vesicles, alone, elicited only minor changes in the MIANS-beta gamma T fluorescence (i.e. less than 10% enhancement), whereas the addition of rhodopsin in the absence of lipid vesicles and in minimal detergent fully mimicked the effects of reconstituted rhodopsin and caused a significant enhancement of the MIANS fluorescence. The interactions between the MIANS-beta gamma T complex and rhodopsin also resulted in a quenching of the rhodopsin tryptophan fluorescence (approximately 30%), which most likely reflected resonance energy transfer between the tryptophan residues and the MIANS moieties. The binding of the MIANS-beta gamma T species to the alpha T subunit was accompanied by an enhancement of the MIANS fluorescence (30-50%) and a slight blue shift of the emission maximum, as described previously (Phillips, W. J., and Cerione, R. A. (1991) J. Biol. Chem. 266, 11017-11024). However, the alpha T-induced enhancement of the MIANS-beta gamma T fluorescence was not additive with the enhancement elicited by rhodopsin. Conditions which resulted in the activation of the alpha T subunit reversed the alpha T-induced enhancement of the MIANS emission, whereas the rhodopsin-induced enhancement persisted, thereby suggesting that the rhodopsin-beta gamma T complex can remain intact throughout the G protein activation event. Studies with synthetic peptides representing different regions of the cytoplasmic domain of rhodopsin demonstrated that a portion of the putative carboxyl-terminal tail (amino acid residues 310-324) was capable of eliciting changes in the MIANS-beta gamma T fluorescence as well as inhibiting the MIANS-beta gamma T-induced quenching of the rhodopsin tryptophan fluorescence. These results suggest that this region of the rhodopsin molecule may constitute a portion of the binding domain for the beta gamma T complex.  相似文献   

2.
P M Guy  J G Koland  R A Cerione 《Biochemistry》1990,29(30):6954-6964
The intrinsic tryptophan fluorescence of the alpha subunit of transducin (alpha T) has been shown to be sensitive to the binding of guanine nucleotides, with the fluorescence being enhanced by as much as 2-fold upon the binding of GTP or nonhydrolyzable GTP analogues [cf. Phillips and Cerione (1988) J. Biol. Chem. 263, 15498-15505]. In this work, we have used these fluorescence changes to analyze the kinetics for the activation (GTP binding)-deactivation (GTPase) cycle of transducin in a well-defined reconstituted phospholipid vesicle system containing purified rhodopsin and the alpha T and beta gamma T subunits of the retinal GTP-binding protein. Both the rate and the extent of the GTP-induced fluorescence enhancement are dependent on [rhodopsin], while only the rate (and not the extent) of the GTP gamma S-induced enhancement is dependent on the levels of rhodopsin. Comparisons of the fluorescence enhancements elicited by GTP gamma S and GTP indicate that the GTP gamma S-induced enhancements directly reflect the GTP gamma S-binding event while the GTP-induced enhancements represent a composite of the GTP-binding and GTP hydrolysis events. At high [rhodopsin], the rates for GTP binding and GTPase are sufficiently different such that the GTP-induced enhancement essentially reflects GTP binding. A fluorescence decay, which always follows the GTP-induced enhancement, directly reflects the GTP hydrolytic event. The rate of the fluorescence decay matches the rate of [32P]Pi production due to [gamma-32P]GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP. The GTP-induced fluorescence changes (i.e., the enhancement and ensuing decay) could be fit to a simple model describing the activation-deactivation cycle of transducin. The results of this modeling suggest the following points: (1) the dependency of the activation-deactivation cycle on [rhodopsin] can be described by a simple dose response profile; (2) the rate of the rhodopsin-stimulated activation of multiple alpha T(GDP) molecules is dependent on [rhodopsin] and when [alpha T] greater than [rhodopsin], the activation of the total alpha T pool may be limited by the rate of dissociation of rhodopsin from the activated alpha T(GTP) species; and (3) under conditions of optimal rhodopsin-alpha T coupling (i.e., high [rhodopsin]), the cycle is limited by GTP hydrolysis with the rate of Pi release, or any ensuing conformational change, being at least as fast as the hydrolytic event.  相似文献   

3.
The functional interactions of the retinal G protein, transducin, with the cyclic GMP phosphodiesterase (PDE) have been examined using the different purified subunit components of transducin and the native and trypsin-treated forms of the effector enzyme. The limited trypsin treatment of the PDE removes the low molecular weight gamma subunit (Mr approximately 14,000) of the enzyme, yielding a catalytic moiety comprised of the two larger molecular subunits (alpha, Mr approximately 85,000-90,000; beta, Mr approximately 85,000-90,000), which is insensitive to the addition of either the pure alpha T.GTP gamma S species or the pure beta gamma T subunit complex. However, the addition of the pure alpha T.GDP species to the trypsin-treated PDE (tPDE) results in a significant (90-100%) inhibition of the enzyme activity. This inhibition can be reversed by excess beta gamma T, suggesting that the holotransducin molecule does not (functionally) interact with the tPDE. However, the inhibition by alpha T.GDP is not reversed by the alpha T.GTP gamma S complex, over a range of [alpha T.GTP gamma S] which elicits a marked stimulation of the native enzyme activity, suggesting that the activated alpha T species does not effectively bind to the tPDE. The alpha T.GDP complex also is capable of inhibiting the alpha T.GTP gamma S-stimulated cyclic GMP hydrolysis by the native PDE. This inhibition can be reversed by excess alpha T.GTP gamma S, as well as by beta gamma T, indicating that the binding site for the activated alpha T species is in close proximity and/or overlaps the binding site for the alpha T.GDP complex on the enzyme. Overall, these results are consistent with a scheme where (a) both the small and larger molecular weight subunits of PDE participate in alpha T-PDE interactions, (b) the activation of PDE by the alpha T.GTP gamma S (or alpha T.GTP) species does not result in the complete dissociation of the gamma subunit from the enzyme, and (c) the deactivation of this signal transduction system results from a direct interaction between the alpha T.GDP species and the catalytic moiety of the effector enzyme.  相似文献   

4.
The visual excitation system of the retinal rod outer segments and the hormone-sensitive adenylate cyclase complex are regulated through guanine nucleotide-binding proteins, transducin in the former and inhibitory and stimulatory regulatory components, Gi and Gs, in the latter. These proteins are functionally and structurally similar; all are heterotrimers composed of alpha, beta, and gamma subunits and exhibit guanosine triphosphatase activity stimulated by light-activated rhodopsin or the agonist-receptor complex. Adenylate cyclase can be stimulated by vanadate, which, like NaF, probably acts through Gs. Effects of vanadate on the function of a guanine nucleotide-binding protein were investigated in a reconstituted model system consisting of purified transducin subunits (T alpha, T beta gamma) and rhodopsin in phosphatidylcholine vesicles. Vanadate (decameric) inhibited [3H]GTP binding to T alpha and noncompetitively inhibited GTP hydrolysis in a concentration-dependent manner with maximal inhibition of approximately 90% at 3-5 mM. Vanadate also inhibited release of bound GDP but did not affect the rate of hydrolysis of bound GTP (single turnover rate), indicating that vanadate did not interfere with the intrinsic GTPase activity of T alpha. Binding of T alpha to rhodopsin and the ADP-ribosylation of T alpha by pertussis toxin, both of which are enhanced in the presence of T beta gamma, were inhibited by vanadate. These findings are consistent with the conclusion that vanadate can cause the dissociation of T alpha from T beta gamma, resulting in the inhibition of GDP-GTP exchange and thereby GTP hydrolysis. Adenylate cyclase activation could result from a similar effect of vanadate on Gs.  相似文献   

5.
For reconstitution studies with rhodopsin and cGMP phosphodiesterase (PDE), all three subunits of heterotrimeric transducin (T alpha beta gamma) were simultaneously expressed in Sf9 cells at high levels using a baculovirus expression system and purified to homogeneity. Light-activated rhodopsin catalyzed the loading of purified recombinant T alpha with GTP gamma S. In vitro reconstitution of rhodopsin, recombinant transducin, and PDE in detergent solution resulted in cGMP hydrolysis upon illumination, demonstrating that recombinant transducin was able to activate PDE. The rate of cGMP hydrolysis by PDE as a function of GTP gamma S-loaded recombinant transducin (T(*)) concentration gave a Hill coefficient of approximately 2, suggesting that the activation of PDE by T(*) was cooperatively regulated. Furthermore, the kinetic rate constants for the activation of PDE by T(*) suggested that only the complex of PDE with two T(*) molecules, PDE. T(2)(*), was significantly catalytically active under the conditions of the assay. We conclude that the model of essential coactivation best describes the activation of PDE by T(*) in a reconstituted vertebrate visual cascade using recombinant heterotrimeric transducin.  相似文献   

6.
In this study, we have examined the interactions of the beta gamma subunit complex of the retinal GTP-binding protein transducin (beta gamma T) with its alpha subunit (alpha T) using fluorescence spectroscopic approaches. The beta gamma T subunit complex was covalently labeled with 2-(4'-maleimidylanilino)napthalene-6-sulfonic acid (MIANS), an environmentally sensitive fluorescent cysteine reagent. The formation of the MIANS beta gamma T complexes (two to five MIANS adducts per beta gamma T) resulted in 2-3-fold enhancements in the MIANS fluorescence, and 20-25-nm blue shifts in the fluorescence emission maxima, relative to the emission for identical concentrations of MIANS-labeled MIANS complexes. The addition of alpha T.GDP to these MIANS beta gamma T complexes resulted in an additional enhancement in the MIANS fluorescence (typically ranging from 20 to 40%) and a 5-10-nm blue shift in the wavelength for maximum emission. These fluorescence changes were specifically elicited by the GDP-bound form of alpha T and were not observed upon the addition of purified alpha T.guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) complexes to the MIANS beta gamma T species. Conditions which resulted in the activation of the alpha T.GDP subunit (i.e. the addition of AlF4- or the addition of rhodopsin-containing vesicles and GTP gamma S) resulted in a reversal of the alpha T.GDP-induced enhancement of the MIANS beta gamma T fluorescence. Thus the MIANS beta gamma T fluorescence provided a spectroscopic monitor for transducin-subunit association and transducin-activation. Based on the results from studies using this spectroscopic read-out, it appears that the association of the alpha T.GDP species with the beta gamma T subunit complex to form the holotransducin molecule is rapid and does not limit the rate of the rhodopsin-stimulated activation of holotransducin. However, either the dissociation of the activated alpha T subunit from the beta gamma T complex, or a conformational change in beta gamma T which occurs as a result of the subunit dissociation event, appears to be slow relative to the G protein-subunit association event.  相似文献   

7.
Transducin (T alpha beta gamma), the heterotrimeric GTP-binding protein that interacts with photoexcited rhodopsin (Rh*) and the cGMP-phosphodiesterase (PDE) in retinal rod cells, is sensitive to cholera (CTx) and pertussis toxins (PTx), which catalyze the binding of an ADP-ribose to the alpha subunit at Arg174 and Cys347, respectively. These two types of ADP-ribosylations are investigated with transducin in vitro or with reconstituted retinal rod outer-segment membranes. Several functional perturbations inflicted on T alpha by the resulting covalent modifications are studied such as: the binding of T alpha to T beta gamma to the membrane and to Rh*; the spontaneous or Rh*-catalysed exchange of GDP for GTP or guanosine 5-[gamma-thio]triphosphate (GTP[gamma S]), the conformational switch and activation undergone by transducin upon this exchange, the activation of T alpha GDP by fluoride complexes and the activation of the PDE by T alpha GTP. ADP-ribosylation of transducin by CTx requires the GTP-dependent activation of ADP-ribosylation factors (ARF), takes place only on the high-affinity, nucleotide-free complex, Rh*-T alpha empty-T beta gamma and does not activate T alpha. Subsequent to CTx-catalyzed ADP-ribosylation the following occurs: (a) addition of GDP induces the release from Rh* of inactive CTxT alpha GDP (CTxT alpha, ADP-ribosylated alpha subunit of transducin) which remains associated to T beta gamma; (b) CTxT alpha GDP-T beta gamma exhibits the usual slow kinetics of spontaneous exchange of GDP for GTP[gamma S] in the absence of Rh*, but the association and dissociation of fluoride complexes, which act as gamma-phosphate analogs, are kinetically modified, suggesting that the ADP-ribose on Arg174 specifically perturbs binding of the gamma-phosphate in the nucleotide site; (c) CTxT alpha GDP-T beta gamma can still couple to Rh* and undergo fast nucleotide exchange; (d) CTxT alpha GTP[gamma S] and CTxT alpha GDP-AlFx (AlFx, Aluminofluoride complex) activate retinal cGMP-phosphodiesterase (PDE) with the same efficiency as their unmodified counterparts, but the kinetics and affinities of fluoride activation are changed; (e) CTxT alpha GTP hydrolyses GTP more slowly than unmodified T alpha GTP, which entirely accounts for the prolonged action of CTxT alpha GTP on the PDE; (f) after GTP hydrolysis, CTxT alpha GDP reassociates to T beta gamma and becomes inactive. Thus, CTx catalyzed ADP-ribosylation only perturbs in T alpha the GTP-binding domain, but not the conformational switch nor the domains of contact with the T beta gamma subunit, with Rh* and with the PDE.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In these studies we have investigated the role of the beta gamma T subunit complex in promoting the rhodopsin-stimulated guanine nucleotide exchange reaction (i.e. the activation event) of the alpha T subunit. The results of these studies demonstrate that although the beta gamma T subunit complex increases the association of the alpha T subunit with lipid vesicles that lack the photoreceptor, the beta gamma T complex is not necessary for the binding of alpha T to lipid vesicles containing rhodopsin, provided sufficient amounts of rhodopsin are present. The rhodopsin-promoted GDP/guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) exchange reaction, within the rhodopsin-alpha T complex, then results in the dissociation of the alpha TGTP gamma S species from the rhodopsin-containing phospholipid vesicles. A second line of evidence for the occurrence of rhodopsin/alpha T interactions, in the absence of beta gamma T, comes from phosphorylation studies using the beta 1 isoform of protein kinase C. The phosphorylation of the alpha T subunit by protein kinase C is inhibited by beta gamma T, both in the absence and in the presence of rhodopsin, but is enhanced by rhodopsin in the absence of beta gamma T. These rhodopsin-alpha T complexes also appear to be capable of undergoing a rhodopsin-stimulated guanine nucleotide exchange event. When the guanine nucleotide exchange is allowed to occur prior to the addition of protein kinase C, the phosphorylation of the alpha T subunit is inhibited. Although beta gamma T is not absolutely required for the rhodopsin/alpha T interaction, it appears to increase the apparent affinity of the alpha T subunit for rhodopsin, both when rhodopsin was inserted into phosphatidylcholine vesicles and when soluble lipid-free preparations of rhodopsin were used. This results in a significant kinetic advantage for the rhodopsin-stimulated guanine nucleotide exchange event, such that the addition of beta gamma T causes a 10-fold promotion of the rhodopsin-stimulation [35S]GTP gamma S binding to alpha T after 1 min but provides less than a 20% promotion of the rhodopsin-stimulated binding after 1 h. The ability of beta gamma T to increase the association of alpha T with the lipid vesicle surface does not appear to contribute significantly to the ability of rhodopsin to couple functionally to alpha T subunits, and there appears to be no requirement for beta gamma T in the alpha T activation event, once the rhodopsin-alpha T complex has formed.  相似文献   

9.
Transducin, a guanine nucleotide-binding protein consisting of two subunits (T alpha and T beta gamma), mediates the signal coupling between rhodopsin and a membrane-bound cyclic GMP phosphodiesterase in retinal rod outer segments. The T alpha subunit is an activator of the phosphodiesterase, and the function of the T beta gamma subunit is to physically link T alpha with photolyzed rhodopsin. In this study, the mechanism of cholera toxin-catalyzed ADP-ribosylation of T alpha has been examined in a reconstituted system consisting of purified transducin and stripped rod outer segment membranes. Limited proteolysis of the labeled T alpha with trypsin indicated that the inserted ADP-ribose is located exclusively on a single proteolytic fragment with an apparent molecular weight of 23,000. Maximal incorporation of ADP-ribose was achieved when guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p) and T beta gamma were present at concentrations equal to that of T alpha and when rhodopsin was continuously irradiated with visible light in the 400-500 nm region. The stimulating effect of illumination was related to the direct interaction of the retinal chromophore with opsin. These findings strongly suggest that a transient protein complex consisting of T alpha X Gpp(NH)p, T beta gamma, and a photointermediate of rhodopsin is the required substrate for cholera toxin. Single turnover kinetic measurements demonstrated that the ADP-ribosylation of T alpha coincided with the appearance of a population of transducin molecules having a very slow rate of GTP hydrolysis. The hydrolysis rate of the bound GTP for this population was 1.1 X 10(-3)/s, which was 22-fold slower than the rate for the unmodified transducin.  相似文献   

10.
In this work we have characterized the ability of a carboxyl peptide-specific antibody (AS/7), raised against the alpha subunit of transducin (alpha T), to potentiate the stimulation of the cyclic GMP phosphodiesterase (PDE) by transducin. The complexation of the purified guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-bound form of alpha T (alpha T.GTP gamma S) with AS/7 results in a 2-5-fold enhancement in the total levels of cyclic GMP hydrolysis measured after 1 min. This potentiation by AS/7 cannot be attributed simply to an increase in the apparent affinity of alpha T.GTP gamma S for the effector enzyme, nor to an increased affinity of the enzyme for the substrate cyclic GMP. The AS/7-induced potentiation is specific for alpha T.GTP gamma S-PDE interactions; this antibody has no effect on the activity of the trypsin-activated PDE nor on the ability of the GDP-bound form of alpha T to inhibit the trypsin-activated enzyme (Kroll, S., Phillips, W. J., and Cerione, R. A. (1989) J. Biol. Chem. 264, 4490-4497). Phosphatidylcholine vesicles also will enhance the alpha T.GTP gamma S-stimulated PDE activity (1.5-2-fold) relative to that measured in the absence of a lipid milieu. However, the potentiations of alpha T-stimulated cyclic GMP hydrolysis elicited by AS/7 and lipids represent separate events. Titration profiles describing the AS/7-induced potentiation, as a function of the amount of antibody added to the assay mixtures, indicate that maximal activity occurs when there is one molecule of AS/7 per two molecules of alpha T.GTP gamma S; the AS/7-induced potentiation is lost when AS/7 much greater than alpha T. GTP gamma S, i.e. conditions which favor the formation of monovalent AS/7-alpha T.GTP gamma S complexes. When the AS/7 is papain-treated to yield monovalent antibody molecules, complexation between these monovalent antibodies and alpha T still occurs (as reflected by the ability of these antibodies to block rhodopsin-alpha T coupling); however, the potentiation of the alpha T.GTP gamma S-stimulated PDE activity is lost. Taken together, these results suggest that the AS/7-induced potentiation of alpha T-stimulated activity is dependent on the bivalent nature of the antibody, and maximal stimulation of PDE activity is achieved by the interactions of two activated-alpha T molecules with a single molecule of PDE.  相似文献   

11.
We previously reported that the beta gamma-subunit of transducin (T beta gamma) is composed of two components, T beta gamma-1 and T beta gamma-2 with distinctive gamma-subunits, T gamma-1 and T gamma-2, respectively. T beta gamma-2 enhances GTP binding to the alpha-subunit of transducin (T alpha) in the presence of a photobleaching intermediate of rhodopsin, while T beta gamma-1 is an inactive component with little enhancement ability (Fukada, Y., Ohguro, H., Saito, T., Yoshizawa, T., and Akino, T. (1989) J. Biol. Chem. 264: 5937-5943). To further elucidate the functional differences between T beta gamma-1 and T beta gamma-2, we examined the association of T beta gamma s with Ca(2+)-calmodulin, and the effect of Ca2+ on binding of GTP to T alpha in the presence of either T beta gamma-1 or T beta gamma-2. Ca2+ had no effect on the GTP binding activity of transducin and T beta gamma s could not associate with Ca(2+)-calmodulin, indicating that the relationship of T beta gamma with Ca(2+)-calmodulin of is different from that of the brain G protein.  相似文献   

12.
An antibody (AS/7) prepared against the carboxyl-terminal decapeptide of the alpha subunit of transducin (alpha T) has been used in various reconstitution studies aimed at characterizing the role of the carboxyl-terminal domain in the different functional activities of transducin. The peptide-specific antibody is a potent inhibitor of the rhodopsin-stimulated GTPase activity in phospholipid vesicle systems containing pure rhodopsin and pure holo-transducin, or rhodopsin and the purified alpha T and beta/gamma (beta gamma T) subunit components, with the highest levels of inhibition (80-95%) occurring under conditions where the molar ratio of holo-transducin (or alpha T) to AS/7 approximately equal to 1. The inhibition of the receptor-stimulated GTPase does not represent an interference in the interactions between the alpha T subunit and the beta gamma T complex, since essentially identical levels of inhibition are observed when AS/7 is preincubated with either free alpha T, holo-transducin, or alpha T in the presence of excess beta gamma T, prior to assay. The AS/7-induced inhibition also does not appear to reflect an alteration in the ability of alpha T to bind or hydrolyze GTP and, in fact, the incubation of alpha T with AS/7 results in a stimulation of the intrinsic GTPase activity for alpha T alone (i.e. in the absence of rhodopsin). Thus, we conclude that the inhibition of the rhodopsin-stimulated GTPase activity by AS/7 is due to the direct blocking (by the antibody) of rhodopsin-alpha T interactions. While AS/7 is capable of uncoupling rhodopsin-transducin interactions, it appears to promote the stimulation of the cyclic GMP phosphodiesterase (PDE) by an activated alpha T subunit. Specifically, when the pure alpha T-guanosine 5-O-(3-thiotriphosphate) (alpha TGTP gamma S) species is preincubated with AS/7 prior to its addition to an assay solution containing PDE, there is at least a 4-fold increase in the resultant cyclic GMP hydrolysis relative to the activities measured with alpha TGTP gamma S, alone, or with alpha TGTP gamma S preincubated with nonimmune (control) rabbit IgG. The AS/7-induced promotion is specific for the active form of alpha T; the inactive alpha TGDP species does not stimulate PDE activity either in the presence or absence of the antibody. The different effects by AS/7 on the various activities of the alpha T subunit highlight the existence of distinct functional domains on alpha T.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The retinal nucleotide regulatory protein, transducin, can substitute for the inhibitory guanine nucleotide-binding regulatory protein (Ni) in inhibiting adenylate cyclase activity in phospholipid vesicle systems. In the present work we have assessed the roles of the alpha (alpha T) and beta gamma (beta gamma T) subunit components in mediating this inhibition. The inclusion of either a preactivated alpha T . GTP gamma S (where GTP gamma S is guanosine 5'-O-(thiotriphosphate)) complex, or the beta gamma complex, in phospholipid vesicles containing the pure human erythrocyte stimulatory guanine nucleotide-binding regulatory protein (Ns) and the resolved catalytic moiety of bovine caudate adenylate cyclase (C) resulted in inhibition of the GppNHp-stimulated (where GppNHp is guanyl-5'-yl imidodiphosphate) activity (by approximately 30-60 and 90%, respectively, at 2 mM MgCl2). The inhibitions by both of these subunit species are specific for the Ns-stimulated activity with neither alpha T . GTP gamma S nor beta gamma T having any direct effect on the intrinsic activity of the catalytic moiety. Increasing the MgCl2 concentration in the assay incubations significantly decreases the inhibitions by both alpha T . GTP gamma S and beta gamma T. Similarly, when the pure hamster lung beta-adrenergic receptor is included in the lipid vesicles with Ns and C, the levels of inhibition of the GppNHp-stimulated activity by both alpha T . GTP gamma S and beta gamma T are reduced compared to those obtained in vesicles containing just Ns and C (but not stimulatory receptor). These inhibitions are reduced still further under conditions where the agonist stimulation of adenylate cyclase activity is maximal, i.e. when stimulating with isoproterenol plus GTP. In these cases the alpha T . GTP gamma S inhibitory effects are completely eliminated and the inhibitions observed with holotransducin can be fully accounted for by the beta gamma T complex. The ability of the beta-adrenergic receptor to relieve these inhibitions suggests that the receptor may remain coupled to Ns (or alpha s) during the activation of the regulatory protein and the stimulation of adenylate cyclase. These results also suggest that under physiological conditions the beta gamma subunit complex is primarily responsible for mediating the inhibition of adenylate cyclase activity.  相似文献   

14.
Photoexcitation of retinal rod photoreceptor cells involves the activation of cGMP enzyme cascade in which sequential activation of rhodopsin, transducin, and the cGMP phosphodiesterase in the rod outer segment constitutes the signal amplification mechanism. Phosducin, a 33-kDa phosphoprotein, has been shown to form a tight complex with the T beta gamma subunit of transducin. In this study, we examined the interaction of phosducin-T beta gamma and the possible regulatory role of phosducin on the cGMP cascade. Addition of phosducin to photolyzed rod outer segment (ROS) membrane reduced the GTP hydrolysis activity of transducin as well as the subsequent activation of the cGMP phosphodiesterase. Phosducin also inhibited the pertussis toxin-catalyzed ADP-ribosylation of transducin, indicating that the interaction between the T alpha and T beta gamma subunits of transducin was interrupted upon binding of phosducin. The inhibitory effects of phosducin were reversed by the addition of exogenous T beta gamma. These results suggest that phosducin is capable of regulating the amount of T beta gamma available to interact with T alpha to form the active transducin complex and thereby functions as a negative regulator of the cGMP cascade. The phosducin-induced alteration of the subunit organization of transducin was examined by chemical cross-linking method using para-phenyl dimaleimide as cross-linker. It was found that the cross-linking among T alpha and T beta gamma was blocked in the presence of phosducin. This result implies that T beta gamma may undergo a conformational change upon phosducin binding which leads to the release of T alpha. Since phosducin is a soluble protein, the interaction with transducin only occurs when transducin is dissociated from ROS disc membrane. Indeed, phosducin failed to dissociate membrane-bound transducin and did not inhibit the initial cycle of transducin activation as measured by the presteady state GTP hydrolysis. However, phosducin interacts effectively with transducin released into solution after the initial activation and blocks the re-binding of T alpha. T beta gamma to ROS membrane by forming a tight complex with T beta gamma. This interaction may play an important role in regulating the turnover of the cGMP cascade in photoreceptor cells.  相似文献   

15.
S C Tsai  R Adamik  Y Kanaho  J L Halpern  J Moss 《Biochemistry》1987,26(15):4728-4733
Guanyl nucleotide binding proteins couple agonist interaction with cell-surface receptors to an intracellular enzymatic response. In the adenylate cyclase system, inhibitory and stimulatory effects are mediated through guanyl nucleotide binding proteins, Gi and Gs, respectively. In the visual excitation complex, the photon receptor rhodopsin is linked to its target, cGMP phosphodiesterase, through transducin (Gt). Bovine brain contains another guanyl nucleotide binding protein, Go. The proteins are heterotrimers of alpha, beta, and gamma subunits; the alpha subunits catalyze receptor-stimulated GTP hydrolysis. To examine the interaction of Go alpha with beta gamma subunits and rhodopsin, the proteins were reconstituted in phosphatidylcholine vesicles. The GTPase activity of Go alpha purified from bovine brain was stimulated by photolyzed, but not dark, rhodopsin and was enhanced by bovine retinal Gt beta gamma or by rabbit liver G beta gamma. Go alpha in the presence of G beta gamma is a substrate for pertussis toxin catalyzed ADP-ribosylation; the modification was inhibited by photolyzed rhodopsin and enhanced by guanosine 5'-O-(2-thiodiphosphate). ADP-Ribosylation of Go alpha by pertussis toxin inhibited photolyzed rhodopsin-stimulated, but not basal, GTPase activity. It would appear from this and prior studies that Go alpha is similar to Gt alpha and Gi alpha; all three proteins exhibit photolyzed rhodopsin-stimulated GTPase activity, are pertussis toxin substrates, and functionally couple to Gt beta gamma. Go alpha (39K) can be distinguished from Gi alpha (41K) but not from Gt alpha (39K) by molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have assessed the functional interactions of two pure receptor proteins with three different pure guanine nucleotide regulatory proteins in phosphatidylcholine vesicles. The receptor proteins are the guinea pig lung beta-adrenergic receptor (beta AR) and the retinal photon receptor rhodopsin. The guanine nucleotide regulatory proteins were the stimulatory (Ns) and inhibitory (Ni) proteins of the adenylate cyclase system and transducin (T), the regulatory protein from the light-activated cyclic GMP phosphodiesterase system in retinal rod outer segments. The insertion of Ns with beta AR in lipid vesicles increases the extent of binding of [35S] GTP gamma S to Ns and in parallel, the total GTPase activity. However, there is little change in the actual rate of catalytic turnover of GTPase activity (defined as mol of Pi released/min/mol of Ns-guanine nucleotide complexes). Enhancement of this turnover rate requires the beta-agonist isoproterenol and is accounted for by an isoproterenol-promoted increase in the rate and extent of [35S]GTP gamma S binding to Ns. The co-insertion of the beta AR with Ni or transducin results in markedly lower stimulation by isoproterenol of both the GTPase activity and [35S]GTP gamma S binding to these nucleotide regulatory proteins indicating that their preferred order of interaction with beta AR is Ns much greater than Ni greater than T. This contrasts with the preferred order of interaction of these different nucleotide regulatory proteins with light-activated rhodopsin which we find to be T approximately equal to Ni much greater than Ns. Nonetheless the fold stimulation of GTPase activity and [35S]GTP gamma S binding in T, induced by light-activated rhodopsin, is significantly greater than the "fold" stimulation of these activities in Ni. This reflects the greater intrinsic ability of Ni to hydrolyze GTP and bind guanine nucleotides (at 10 mM MgCl2, 100-200 nM GTP or [35S] GTP gamma S) compared to T. The maximum turnover numbers for the rhodopsin-stimulated GTPase in both Ni and T are similar to those obtained for isoproterenol-stimulated activity in Ns. This suggests that the different nucleotide regulatory proteins are capable of a common upper limit of catalytic efficiency which can best be attained when coupled to the appropriate receptor.  相似文献   

17.
A panel of monoclonal antibodies has been developed against the T alpha, T beta and T gamma subunits of bovine transducin. Two anti-T alpha antibodies from this panel (TF15 and TF16) and a third one (4A) against frog T alpha (Witt, P. L., Hamm, H. E., and Bownds, M. D. (1984) J. Gen. Physiol. 84, 251-263) were characterized. Each of these monoclonal antibodies recognizes a different region of T alpha and has a specific effect on the function of transducin. The binding of TF15 is reversibly enhanced by treating T alpha with either 1 M guanidinium chloride or, to a smaller extent, by the removal of bound guanine nucleotide. Its epitope is located in a 12-kDa tryptic fragment containing the binding site for the guanine moiety of GTP. Taken together, these results support previous observations that the conformation of T alpha is modulated by the occupancy of the guanine nucleotide binding site. In contrast to TF15, TF16 recognizes only the native form of T alpha. Its epitope resides within the central portion of the T alpha molecule. While T alpha-bound TF16 does not inhibit either pertussis toxin-catalyzed ADP-ribosylation, rhodopsin binding, or transducin subunit interaction, it blocks both the light-activated uptake of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and the GTP-dependent elution of transducin from photolyzed rhodopsin. These effects are unlikely to be caused by the occupation of the guanine nucleotide binding site by TF16 because this antibody quantitatively precipitates T alpha-GTP gamma S. We propose that bound TF16 locks T alpha in a conformation that prevents the entrance of guanine nucleotide and favors T beta gamma association. In contrast to TF16, the epitope of 4A was mapped to the amino-terminal region of T alpha. This monoclonal antibody blocks pertussis toxin-catalyzed ADP-ribosylation, GTP gamma S uptake, and T alpha-T beta gamma association. Moreover, the binding site for 4A becomes inaccessible when transducin binds to photolyzed rhodopsin. These results suggest that the inhibitory effects of 4A are due to a simultaneous steric blockage of both the interaction of T alpha with T beta gamma and their binding to photolyzed rhodopsin. The results obtained from these studies are correlated with the structure and function of T alpha.  相似文献   

18.
Photolyzed rhodopsin acts in a catalytic manner to mediate the exchange of GTP for GDP bound to transducin. We have analyzed the steady-state kinetics of this activation process in order to determine the molecular mechanism of interactions between rhodopsin, transducin, and guanine nucleotides. Initial velocities (Vo) of the exchange reaction catalyzed by rhodopsin were measured for various transducin concentrations at several fixed levels of the GTP analog, [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S). The initial rate data analysis rigorously demonstrates that rhodopsin mediates the activation of transducin by a double-displacement catalytic mechanism. The Michaelis-Menten curves determined as a function of [transducin] reveal remarkable allosteric behavior; analysis of this data yields a Hill coefficient of 2. Lineweaver-Burk plots of Vo-1 versus [transducin]-1 display curvilinearity indicative of positive cooperativity and a series of parallel lines are generated by plotting Vo-1 as a function of [transducin]-2. The plots of Vo-1 versus [GTP gamma S]-1 show no evidence of allosterism and are a parallel series. Furthermore, the allosteric behavior observed in the activation of transducin is also witnessed in the rhodopsin-catalyzed guanine nucleotide exchange of the G protein's purified alpha subunit in the absence of the beta X gamma subunit complex. The latter observation implies that the molecular basis for allosterism in the activation process resides in the interactions between the photoreceptor and transducin's alpha subunit.  相似文献   

19.
We have produced a recombinant transducin alpha subunit (rT alpha) in sf9 cells, using a baculovirus system. Deletion of the myristoylation site near the N-terminal increased the solubility and allowed the purification of rT alpha. When reconstituted with excess T beta gamma on retinal membrane, rT alpha displayed functional characteristics of wild-type T alpha vis à vis its coupled receptor, rhodopsin and its effector, cGMP phosphodiesterase (PDE). We further mutated a tryptophan, W207, which is conserved in all G proteins and is suspected to elicit the fluorescence change correlated to their activation upon GDP/GTP exchange or aluminofluoride (AlFx) binding. [W207F]T alpha mutant displayed high affinity receptor binding and underwent a conformational switch upon receptor-catalysed GTP gamma S binding or upon AlFx binding, but this did not elicit any fluorescence change. Thus W207 is the only fluorescence sensor of the switch. Upon the switch the mutant remained unable to activate the PDE. To characterize better its effector-activating interaction we measured the affinity of [W207F]T alpha GDP-AlFx for PDE gamma, the effector subunit that binds most tightly to T alpha. [W207F]T alpha still bound in an activation-dependent way to PDE gamma, but with a 100-fold lower affinity than rT alpha. This suggests that W207 contributes to the G protein effector binding.  相似文献   

20.
The light-detecting system of retinal rod outer segments is regulated by a guanyl nucleotide binding (G) protein, transducin, which is composed of alpha-, beta-, and gamma-subunits. Transducin couples rhodopsin to the intracellular effector enzyme, a cGMP phosphodiesterase. The beta gamma complex (T beta gamma) is required for the alpha-subunit (T alpha) to interact effectively with the photon receptor rhodopsin. It is not clear, however, whether T beta gamma binds directly to rhodopsin or promotes T alpha binding to rhodopsin only by binding to T alpha. We have found that serum from rabbits immunized with T beta gamma contained a population of antibodies that were reactive against rhodopsin. These antibodies could be separated from T beta gamma antibodies by absorbing the latter on immobilized transducin. Binding of purified rhodopsin antibodies was inhibited by T beta gamma, suggesting that the rhodopsin antibodies and T beta gamma bound to the same site on rhodopsin. We propose that the rhodopsin antibodies act both as antiidiotypic antibodies against the idiotypic T beta gamma antibodies and as antibodies against rhodopsin. This hypothesis is consistent with the conclusion that T beta gamma interacts directly with the receptor. It is probable that in an analogous way, G beta gamma interacts directly with receptors of the adenylate cyclase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号