首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrophil elastase has been found to cleave met-enkephalin-arg6-gly7-leu8 between met5 and arg6 thereby releasing the active opiate met-enkephalin. Oxidized met-enkephalin octapeptide is not attacked by this enzyme. These data suggest a potential role for neutrophil proteinases and oxidases in the regulation of opiate production in tissues.  相似文献   

2.
Based on sequence homology with a previously cloned human GlcNAc 6-O-sulfotransferase, we have identified an open reading frame (ORF) encoding a novel member of the Gal/GalNAc/GlcNAc 6-O-sulfotransferase (GST) family termed GST-5 on the human X chromosome (band Xp11). GST-5 has recently been characterized as a novel GalNAc 6-O-sulfotransferase termed chondroitin 6-sulfotransferase-2 (Kitagawa, H., Fujita, M., Itio, N., and Sugahara K. (2000) J. Biol. Chem. 275, 21075-21080). We have coexpressed a human GST-5 cDNA with a GlyCAM-1/IgG fusion protein in COS-7 cells and observed four-fold enhanced [(35)S]sulfate incorporation into this mucin acceptor. All mucin-associated [(35)S]sulfate was incorporated as GlcNAc-6-sulfate or Galbeta1-->4GlcNAc-6-sulfate. GST-5 was also expressed in soluble epitope-tagged form and found to catalyze 6-O-sulfation of GlcNAc residues in synthetic acceptor structures. In particular, GST-5 was found to catalyze 6-O-sulfation of beta-benzyl GlcNAc but not alpha- or beta-benzyl GalNAc. In the mouse genome we have found a homologous ORF that predicts a novel murine GlcNAc 6-O-sulfotransferase with 88% identity to the human enzyme. This gene was mapped to mouse chromosome X at band XA3.1-3.2. GST-5 is the newest member of an emerging family of carbohydrate 6-O-sulfotransferases that includes chondroitin 6-sulfotransferase (GST-0), keratan-sulfate galactose 6-O-sulfotransferase (GST-1), the ubiquitously expressed GlcNAc 6-O-sulfotransferase (GST-2), high endothelial cell GlcNAc 6-O-sulfotransferase (GST-3), and intestinal GlcNAc 6-O-sulfotransferase (GST-4).  相似文献   

3.
Patients with vitiligo accumulate millimolar levels of H(2)O(2) in their epidermis. The recycling process of (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin in these patients is disrupted due to deactivation of 4a-OH-BH(4) dehydratase by H(2)O(2). The H(2)O(2) oxidation products 6- and 7-biopterin lead to the characteristic fluorescence of the affected skin upon Wood's light examination (UVA 351 nm). Here we report for the first time the presence and accumulation of pterin-6-carboxylic acid (P-6-COOH) in the epidermis of these patients. Exploring potential sources for P-6-COOH revealed that sepiapterin and 6-biopterin are readily photo-oxidised to P-6-COOH by UVA/UVB irradiation. Photolysis of sepiapterin and 6-biopterin produces stoichiometric H(2)O(2) under aerobic conditions, where O(2) is the electron acceptor, thus identifying an additional source for H(2)O(2) generation in vitiligo. A detailed analysis utilising UV/visible spectrophotometry, HPLC, TLC, and mass spectroscopy showed for sepiapterin direct oxidation to P-6-COOH, whereas 6-biopterin formed the intermediate 6-formylpterin (P-6-CHO) which is then further photo-oxidised to P-6-COOH.  相似文献   

4.
The collagens are recognized by the alphaI domains of the collagen receptor integrins. A common structural feature in the collagen-binding alphaI domains is the presence of an extra helix, named helix alphaC. However, its participation in collagen binding has not been shown. Here, we have deleted the helix alphaC in the alpha(2)I domain and tested the function of the resultant recombinant protein (DeltaalphaCalpha(2)I) by using a real-time biosensor. The DeltaalphaCalpha(2)I domain had reduced affinity for type I collagen (430 +/- 90 nM) when compared with wild-type alpha(2)I domain (90 +/- 30 nM), indicating both the importance of helix alphaC in type I collagen binding and that the collagen binding surface in alpha(2)I domain is located near the metal ion-dependent adhesion site. Previous studies have suggested that the charged amino acid residues, surrounding the metal ion-dependent adhesion site but not interacting with Mg(2+), may play an important role in the recognition of type I collagen. Direct evidence indicating the participation of these residues in collagen recognition has been missing. To test this idea, we produced a set of recombinant alpha(2)I domains with mutations, namely D219A, D219N, D219R, E256Q, D259N, D292N, and E299Q. Mutations in amino acids Asp(219), Asp(259), Asp(292), and Glu(299) resulted in weakened affinity for type I collagen. When alpha(2) D219N and D292N mutations were introduced separately into alpha(2)beta(1) integrin expressed on Chinese hamster ovary cells, no alterations in the cell spreading on type I collagen were detected. However, Chinese hamster ovary cells expressing double mutated alpha(2) D219N/D292N integrin showed remarkably slower spreading on type I collagen, while spreading on type IV collagen was not affected. The data indicate that alpha(2)I domain binds to type I collagen with a different mechanism than to type IV collagen.  相似文献   

5.
A 1H-NMR investigation was carried out on the tetranucleotides U-m6(2)A-U-m6(2)A and m6(2)A-m6(2)A-U-m6(2)A (m6(2) = N6-dimethyladenosine) as well as on the hybrid trinucleotide dA-r(U-A). An extensive comparison with m6(2)A-U-m6(2)A and other relevant compounds is made. Previous proton NMR studies on trinucleotides have shown that purine-pyrimidine-purine sequences prefer to adopt a mixture of states which have as a common feature that the interior pyrimidine residue bulges out, whereas the flanking purine residues stack upon each other. A stacking interaction on the 3' side of the bulge is known to have no measurable effect on the bulge population. Chemical-shift data, ribose ring conformational analysis and information from NOE experiments now show unambiguously that the moderate U(1)-m6(2)A(2) stack in U-m6(2)A-U-m6(2)A diminishes the population of bulged-out structures in favour of a regular stack. This tendency towards conformational transmission in the downstream 5'----3' direction is fully confirmed by the fact that the strong m6(2)A(1)-m6(2)A(2) stack in the tetranucleotide m6(2)A-m6(2)A-U-m6(2)A virtually precludes the formation of bulged-out structures. The conformational characteristics of dA-r(U-A) appear comparable with those of m6(2)A-U-m6(2)A, which indicates that the presence of a 2'-hydroxyl group in the first purine residue is not a necessary prerequisite for the formation of a bulge.  相似文献   

6.
Factors affecting microbial aerobic biodegradation of 6:2 fluorotelomer alcohol [6:2 FTOH, F(CF2)6CH2CH2OH] were investigated using three alkane-degrading bacteria (Mycobacterium vaccae JOB5, Pseudomonas oleovorans, and Pseudomonas butanovora) and one fluoroacetate-degrading bacterium (Pseudomonas fluorescens DSM 8341). In the presence of formate (an external reducing energy source), P. fluorescens DSM 8341 produced perfluorobutanoic acid by removing three –CF2– groups from 6:2 FTOH. Only P. fluorescens DSM 8341 transformed 5:3 acid to 4:3 acid and perfluoropentanoic acid. However, formate showed no effects on the degradation rates, patterns, or transformation products of 6:2 FTOH by M. vaccae JOB5. When dicyclopropylketone (an alkane hydroxylase inducer) or formate was added, P. oleovorans rapidly degraded 6:2 FTOH and produced PFPeA. In the presence of lactate, P. butanovora degraded 6:2 FTOH slowly but produced diverse metabolites. Our results demonstrate that the extent and mechanisms of 6:2 FTOH biotransformation are affected by strain types, enzyme inducers, and levels of reducing energy.  相似文献   

7.

[Purpose]

This study was carried out to investigate the effects of different training modes on IL-6 and CRP in patients with type 2 diabetes mellitus (T2DM).

[Methods]

The subjects consisted of 16 middle-aged women with type 2 diabetes mellitus (T2DM), all of whom had no other complications. The 16 subjects were randomly assigned to two experimental groups: the circuit training group (CTG, n = 8) and aerobic training group (ATG, n = 8). Based on measured THR (target heart rate) for maximum oxygen consumption rate, the circuit training group (CTG) exercised at 60% intensity, 60 min/day, 5 sets, 3 days/week for 12 weeks. Based on measured THR (target heart rate) for maximum oxygen consumption rate, the aerobic training group (ATG) exercised at 60% intensity (which was increased gradually in weeks 4, 7, and 10) 60 min/day, 3 days/week for 12 weeks.

[Results]

The results are as follows. Significant decreases in the post training values of weight, % Fat, BMI, IL-6 and CRP (p < .05) were observed in the CTG compared to pre-training. However, there were no differences in the physical characteristic and blood inflammatory factors between the groups (ATG & CTG).

[Conclusion]

In conclusion, the results of this study suggest that circuit training (CT) may be considered as an effective training mode for helping to decrease the blood inflammatory factors (IL-6 and CRP) in patients with type 2 diabetes mellitus (T2DM).  相似文献   

8.
The reaction of 2,3.4,6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide with a 6-aryl-5-cyano-2-(methylthio)pyrimidin-4(3H)one in aqueous acetone in the presence of KOH furnishes a 4-(beta-D-glucopyranosyloxy)pyrimidine and a 3-(beta-D-glucopyranosyl)pyrimidine as the major and minor product. respectively.  相似文献   

9.
Faure P  Oziol L  Artur Y  Chomard P 《Biochimie》2004,86(6):411-418
Triiodothyronine (T3) and triiodothyroacetic acid (TA3) are thyroid compounds that similarly protect low-density lipoprotein (LDL) against oxidation induced by the free radical generator 2,2'-azobis-[2-amidinopropane] dihydrochloride (AAPH). However, TA3 is more antioxidant than T3 on LDL oxidation induced by copper ions (Cu2+), suggesting that these compounds act by different mechanisms. Here we measured conjugated diene production kinetics during in vitro human LDL (50 mg LDL-protein per l) oxidation induced by various Cu2+ (0.5-4 microM) or AAPH (0.25-2 mM) concentrations in the presence of T3, TA3, butylated hydroxytoluene (BHT) (a free radical scavenger) or ethylenediaminetetracetic acid (EDTA) (a metal chelator). From the kinetics were estimated: length of the lag phase (Tlag), maximum velocity of conjugated diene production (Vmax), and maximum amount of generated dienes (Dmax). Thyroid compound effects on these oxidation parameters were compared to those of the controls BHT and EDTA. In addition we measured by atomic absorption spectrometry copper remaining in LDL after a 30 min incubation of LDL with Cu2+ and the compounds followed by extensive dialysis, i.e. copper bound to LDL. As expected, LDL-copper was decreased by EDTA in a concentration-dependent manner, whereas it was not affected by BHT. T3 increased LDL-copper whereas TA3 slightly decreased it. The whole data suggest that T3 and TA3 are free radical scavengers that also differently disturb LDL-copper binding, an essential step for LDL lipid peroxidation. The most likely mechanisms are that T3 induces new copper binding sites inside the LDL particle, increasing the LDL-copper amount but in a redox-inactive form, whereas TA3 blocks some redox-active copper binding sites highly implicated in the initiation and the propagation of lipid peroxidation. Alternatively, we also found that a little amount of copper is tightly bound in LDL, which may be essential for the propagation of lipid peroxidation induced by free radical generators.  相似文献   

10.
Isolated heart mitochondria hydrolyze the acetoxymethyl esters of the Ca2+-sensitive fluorescent probe fura-2 and the fluorescent pH indicator biscarboxyethyl-5(6)-carboxyfluorescein (BCECF). The free acid forms of both probes are retained in the matrix and their fluorescence can be used to monitor the pCa and pH, respectively, of this compartment. When fura-2 loaded rat heart myocytes are lysed with digitonin, a portion of the dye is retained in the mitochondrial fraction and its fluorescence reports the uptake and release of Ca2+ by the mitochondria. It is concluded that fura-2 and BCECF may report mitochondrial as well as cytosol parameters when the probes are used in intact cells.  相似文献   

11.
It has been shown that the stable analog of leu-enkephalin diminishes to a great extent the stress-induced changes in the blood content of ACTH, cortisol, hypophyseal-thyroid hormones, the CAMP level in the adrenal and thymic tissues of white rats. It is assumed that this circumstance may interfere with depletion of the adrenal cortex and suppression of the lymphoid-macrophagal system.  相似文献   

12.
The relationship between 5-hydroxyeicosatetraenoic acid (5-HETE) and calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in prolactin (PRL) release was investigated in rat anterior pituitary cells. Arachidonic acid or 5-HETE, a 5-lipoxygenase metabolite of arachidonic acid, is known to cause a significant concentration-dependent increase in PRL release. Phorbol 12-myristate 13-acetate (PMA) and dioctanoyglycerol (diC8) have also been known to stimulate PRL release from pituitary cells, so we showed that these PRL releases were correlated with the activation of protein kinase C, that is, they induced dose-dependent translocation of protein kinase C from the cytosol to the membrane. Arachidonic acid, however, did not cause a significant change in the distribution of protein kinase C. We also showed that the PRL release induced by arachidonic acid and that induced by 5-HETE were additional to that by 100 nM PMA. Thus we suggested that the signals for the stimulation of PRL release sent by arachidonic acid and 5-HETE would be different from the signal sent through protein kinase C by PMA.  相似文献   

13.
14.
Vascular endothelial growth factor (VEGF) increases hydraulic conductivity (L(p)) by stimulating Ca(2+) influx into endothelial cells. To determine whether VEGF-mediated Ca(2+) influx is stimulated by release of Ca(2+) from intracellular stores, we measured the effect of Ca(2+) store depletion on VEGF-mediated increased L(p) and endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) of frog mesenteric microvessels. Inhibition of Ca(2+) influx by perfusion with NiCl(2) significantly attenuated VEGF-mediated increased [Ca(2+)](i). Depletion of Ca(2+) stores by perfusion of vessels with thapsigargin did not affect the VEGF-mediated increased [Ca(2+)](i) or the increase in L(p). In contrast, ATP-mediated increases in both [Ca(2+)](i) and L(p) were inhibited by thapsigargin perfusion, demonstrating that ATP stimulated store-mediated Ca(2+) influx. VEGF also increased Mn(2+) influx after perfusion with thapsigargin, whereas ATP did not. These data showed that VEGF increased [Ca(2+)](i) and L(p) even when Ca(2+) stores were depleted and under conditions that prevented ATP-mediated increases in [Ca(2+)](i) and L(p). This suggests that VEGF acts through a Ca(2+) store-independent mechanism, whereas ATP acts through Ca(2+) store-mediated Ca(2+) influx.  相似文献   

15.
To determine separately the effect of corticotropin-releasing hormone (CRH) on analgesia and on inflammation, rats were assigned to receive CRH 60 microg/kg, CRH 300 microg/kg, morphine 4 mg/kg, or normal saline intravenously 15 min before a burn injury. Two mesh chambers that allowed collection of fluid had been previously implanted subdermally in each rat. The skin overlying the right chamber was subject to thermal injury. The left chamber served as a control. We assessed systemic analgesia, and levels of beta-endorphin and corticosterone in plasma and in chamber fluid before, 1, 4 and 24 h after drug administration. The CRH groups exhibited longer tail flick latencies than the control group (P=0.0001) although the increase in latency was of smaller magnitude than in the morphine group. We did not observe a CRH dose response for analgesia. Plasma corticosterone levels were higher in the CRH 300 microg/kg group than in the normal saline group at 4 h (P=0.03). Levels of beta-endorphin in plasma as well as the levels of corticosterone and beta-endorphin in chambers were similar in the CRH 300 microg/kg group and in the normal saline group (all P values>0.1). Thus, systemically administered CRH produces analgesia in thermal injury independent of its effect on these two markers of local or systemic inflammation.  相似文献   

16.
17.
Krall L  Raschke M  Zenk MH  Baron C 《FEBS letters》2002,527(1-3):315-318
The plant pathogen Agrobacterium tumefaciens produces cytokinins upon induction of the virulence genes by secondary metabolites from wounded plants, and these hormones are believed to stimulate the infection process. To study the biosynthetic pathway, the tzs gene, encoding the Tzs (trans-zeatin-synthesizing) protein from A. tumefaciens, was cloned and the protein was overproduced and purified. Analysis of its reactivity with radioactively labeled substrate demonstrated conversion of 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate, a product of the deoxyxylulose phosphate pathway, with AMP to zeatin riboside 5'-phosphate. This suggests that A. tumefaciens uses an alternative pathway of cytokinin biosynthesis, which had previously been hypothesized to operate in plants.  相似文献   

18.
The opisthonotal gland secretion of the acarid mite, Caloglyphus polyphyllae, contained two new monoterpenes, (E)-2-(2-hydroxyethylidene)-6-methyl-5-heptenal (1) and (E)-2-(2-hydroxyethyl)-6-methyl-2,5-heptadienal (2), to which we have given the trivial names alpha- and beta-acariolal in relation to alpha- and beta-acaridial (3 and 4), respectively. Elucidation of the structure of 1 was established mainly from 1H-NMR and GC/MS spectral data after partial purification, together with the fact that 1 was recovered in the more-polar fraction from a silica gel column than alpha- and beta-acaridial (3 and 4) present in the secretion. Compound 2 was obtained in the same fraction as a mixture with 1. Based on the facts that 2 had the same molecular weight by GC/MS and the same polarity as that of 1, compound 2 was assumed to be a structural analog of 1. The structures of compounds 1 and 2 were confirmed by their synthesis in nine and ten respective steps starting from alpha-bromo-gamma-butyrolactone.  相似文献   

19.
Exposure of DNA to oxidative stress produces a variety of DNA lesions including the formamidopyrimidines, which are derived from the purines. These lesions may play important roles in carcinogenesis. We achieved the first chemical syntheses of a monomeric form of Fapy-dA (1) and oligonucleotides containing this lesion or Fapy-dG at a defined site. Monomeric Fapy-dA readily epimerized at 25 degrees C in phosphate buffer (pH 7.5). The beta-anomer was favored by a ratio of 1.33:1.0, and equilibration was achieved in less than 7 h. Deglycosylation of Fapy-dA in the monomer follows first-order kinetics from 37 to 90 degrees C. The rate constants for deglycosylation of Fapy-dA in the monomeric and oligonucleotide substrates were measured at a common temperature (55 degrees C) and found to be the same within experimental error (t(1/2) = 20.5 h). Implementation of the activation parameters measured for the deglycosylation of 1 indicates that the half-life for deglycosylation of Fapy-dA at 37 degrees C is approximately 103 h. Analysis of the rate constant for deglycosylation of Fapy-dG in an oligonucleotide, revealed that this lesion is approximately 25 times more resistant to hydrolysis than Fapy-dA at 55 degrees C. These results indicate that Fapy-dA and Fapy-dG will be sufficiently long-lived in DNA so as to warrant investigation of their genotoxicity, and both anomers will be present during this time.  相似文献   

20.
Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp), previously thought to be present only in bacteria but recently found in fungi, catalyzes the formation of acetyl phosphate from xylulose 5-phosphate or fructose 6-phosphate. Here, we describe the first biochemical and kinetic characterization of a eukaryotic Xfp, from the opportunistic fungal pathogen Cryptococcus neoformans, which has two XFP genes (designated XFP1 and XFP2). Our kinetic characterization of C. neoformans Xfp2 indicated the existence of both substrate cooperativity for all three substrates and allosteric regulation through the binding of effector molecules at sites separate from the active site. Prior to this study, Xfp enzymes from two bacterial genera had been characterized and were determined to follow Michaelis-Menten kinetics. C. neoformans Xfp2 is inhibited by ATP, phosphoenolpyruvate (PEP), and oxaloacetic acid (OAA) and activated by AMP. ATP is the strongest inhibitor, with a half-maximal inhibitory concentration (IC50) of 0.6 mM. PEP and OAA were found to share the same or have overlapping allosteric binding sites, while ATP binds at a separate site. AMP acts as a very potent activator; as little as 20 μM AMP is capable of increasing Xfp2 activity by 24.8% ± 1.0% (mean ± standard error of the mean), while 50 μM prevented inhibition caused by 0.6 mM ATP. AMP and PEP/OAA operated independently, with AMP activating Xfp2 and PEP/OAA inhibiting the activated enzyme. This study provides valuable insight into the metabolic role of Xfp within fungi, specifically the fungal pathogen Cryptococcus neoformans, and suggests that at least some Xfps display substrate cooperative binding and allosteric regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号