首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Among four cellulolytic microorganisms examined, Cellulomonas biazotea NCIM‐2550 can grow on various cellulosic substrates and produce reducing sugar. The activity of cellulases (endoglucanase, exoglucanase, and cellobiase), xylanase, amylase, and lignin class of enzymes produced by C. biazotea was mainly present extracellularly and the enzyme production was dependent on cellulosic substrates (carboxymethyl cellulose [CMC], sugarcane bagasse [SCB], and xylan) used for growth. Effects of physicochemical conditions on cellulolytic enzyme production were systematically investigated. Using MnCl2 as a metal additive significantly induces the cellulase enzyme system, resulting in more reducing sugar production. The efficiency of fermentative conversion of the hydrolyzed SCB and xylan into clean H2 energy was examined with seven H2‐producing pure bacterial isolates. Only Clostridiumbutyricum CGS5 exhibited efficient H2 production performance with the hydrolysate of SCB and xylan. The cumulative H2 production and H2 yield from using bagasse hydrolysate (initial reducing sugar concentration = 1.545 g/L) were approximately 72.61 mL/L and 2.13 mmol H2/g reducing sugar (or 1.91 mmol H2/g cellulose), respectively. Using xylan hydrolysate (initial reducing sugar concentration = 0.345 g/L) as substrate could also attain a cumulative H2 production and H2 yield of 87.02 mL/L and 5.03 mmol H2/g reducing sugar (or 4.01 mmol H2/g cellulose), respectively. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
A thermophilic anaerobic bacterium Clostridium sp. TCW1 was isolated from dairy cow dung and was used to produce hydrogen from cellulosic feedstock. Extracellular cellulolytic enzymes produced from TCW1 strain were identified as endoglucanases (45, 53 and 70 kDa), exoglucanase (70 kDa), xylanases (53 and 60 kDa), and β-glucosidase (45 kDa). The endoglucanase and xylanase were more abundant. The optimal conditions for H2 production and enzyme production of the TCW1 strain were the same (60 °C, initial pH 7, agitation rate of 200 rpm). Ten cellulosic feedstock, including pure or natural cellulosic materials, were used as feedstock for hydrogen production by Clostridium strain TCW1 under optimal culture conditions. Using filter paper at 5.0 g/L resulted in the most effective hydrogen production performance, achieving a H2 production rate and yield of 57.7 ml/h/L and 2.03 mol H2/mol hexose, respectively. Production of cellulolytic enzyme activities was positively correlated with the efficiency of dark-H2 fermentation.  相似文献   

3.
A mutant plant (Arabidopsis thaliana), sex1-1 (starch excess 1-1), accumulating high starch content in leaves was created to serve as better biomass feedstock for a H2-producing strain Clostridium butyricum CGS2, which efficiently utilizes starch for H2 production but cannot assimilate cellulosic materials. The starch content of the mutant plant increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using sex1-1 mutant plant as feedstock, C. butyricum CGS2 could produce 490.4 ml/l of H2 with a H2 production rate of 32.9 ml/h/l. The H2 production performance appeared to increase with the increase in the concentration of mutant plant from 2.5 to 10 g/l. The highest H2 to plant biomass yield was nearly 49 ml/g for the mutant plant. This study successfully demonstrated the feasibility of using a starch-rich mutant plant for more effective bioH2 production with C. butyricum CGS2.  相似文献   

4.
The maximum product yield of endo-glucanase (650 IU g(-1) substrate) from Cellulomonas biazotea mutant 51 Sm(r) was 1.5- to 2.5-fold more than was produced by the wild type cells and was twice that reported by previous researchers. Mutation substantially improved the enthalpy (DeltaH (*)) and entropy of activation (DeltaS (*)) for product formation, turnover number, specificity constant activation energy, free energies for transition state formation and substrate binding for CMC hydrolysis respectively.  相似文献   

5.
Yoon JJ  Cha CJ  Kim YS  Kim W 《Biotechnology letters》2008,30(8):1373-1378
An endoglucanase that is able to degrade both crystalline and amorphous cellulose was purified from the culture filtrates of the brown-rot fungus Fomitopsis pinicola grown on cellulose. An apparent molecular weight of the purified enzyme was approximately 32 kDa by SDS-PAGE analysis. The enzyme was purified 11-fold with a specific activity of 944 U/mg protein against CMC. The partial amino acid sequences of the purified endoglucanase had high homology with endo-beta-1,4-glucanase of glycosyl hydrolase family 5 from other fungi. The K(m) and K(cat)values for CMC were 12 mg CMC/ml and 670/s, respectively. The purified EG hydrolyzed both cellotetraose (G4) and cellopentaose (G5), but did not degrade either cellobiose (G2) or cellotriose (G3).  相似文献   

6.
The production of xylitol by the yeast Candida guilliermondii was investigated in batch fermentations with aspenwood hemicellulose hydrolysate and compared with results obtained in semi-defined media with a mixture of glucose and xylose. The hemicellulose hydrolysate had to be supplemented by yeast extract and the maximum xylitol yield (0.8 g g–1) and productivity (0.6 g l–1 h–1) were reached by controlling oxygen input.  相似文献   

7.
A reactor-scale hydrogen (H2) productionvia the water-gas shift reaction of carbon monoxide (CO) and water was studied using the purple nonsulfur bacterium,Rhodopseudomonas palustris P4. The experiment was conducted in a two-step process: an aerobic/chemoheterotrophic cell growth step and a subsequent anaerobic H2 production step. Important parameters investigated included the agitation speed, inlet CO concentration and gas retention time. P4 showed a stable H2 production capability with a maximum activity of 41 mmol H2 g cell−1h−1 during the continuous reactor operation of 400 h. The maximal volumetric H2 production rate was estimated to be 41 mmol H2 L1h−1, which was about nine-fold and fifteen-fold higher than the rates reported for the photosynthetic bacteriaRhodospirillum rubrum andRubrivivax gelatinosus, respectively. This is mainly attributed to the ability of P4 to grow to a high cell density with a high specific H2 production activity. This study indicates that P4 has an outstanding potential for a continuous H2 productionvia the water-gas shift reaction once a proper bioreactor system that provides a high rate of gas-liquid mass transfer is developed.  相似文献   

8.
Utilization of -xylose as carbon source for production of bacterial cellulose was studied. Seventeen strains of acetic acid bacteria were screened for their cellulose productivity in -glucose, -xylose, and -xylose/ -xylulose mixed media, respectively. -Xylose was not well metabolized by any bacterial strains that exhibited high cellulose production in -glucose medium. Consequently, bacterial cellulose production in -xylose medium was unsuccessful. -Xylose, however, became utilizable substrate for bacterial strains if xylose-isomerase was added to the medium. Acetobacter xylinus IFO 15606 was the best cellulose producer in -xylose/ -xylulose mixed medium, so cultural conditions were studied for enhanced cellulose production. With pH controlled, the strain could produce cellulose at a yield exceeding 0.3 g per 100 ml of -xylose/ -xylulose mixed medium, which was comparable to the yields in -glucose medium by excellent producers in the literature.  相似文献   

9.
[目的]旨在对鸡源丁酸梭菌进行分离鉴定与安全性评估.[方法]利用厌氧培养方法对源自汶上芦花鸡与SPF鸡粪便样品进行丁酸梭菌的分离与纯化,挑选可疑菌落进行微生物质谱鉴定,进一步通过16S rRNA基因测序进行鉴定,16S rRNA测序结果与NCBI核苷酸数据库中丁酸梭菌的16S rRNA序列进行同源性分析;同时,进行所有...  相似文献   

10.
[目的]探究丙酮丁醇梭菌硫氧还蛋白系统在生长和代谢过程中的功能.[方法]使用ClosTron系统对硫氧还蛋白系统中的硫氧还蛋白还原酶基因(trxB)进行插入失活,得到突变株,通过Southern杂交方法验证插入内含子的拷贝数;在基本培养基中进行分批发酵,比较并分析突变株的生长特点;通过pH控制,利用限磷的连续发酵方法使...  相似文献   

11.
Industrial waste corn cob residue (from xylose manufacturing) without pretreatment was hydrolyzed by cellulase and cellobiase. The cellulosic hydrolysate contained 52.4 g l−1 of glucose and was used as carbon source for lactic acid fermentation by cells of Lactobacillus delbrueckii ZU-S2 immobilized in calcium alginate gel beads. The final concentration of lactic acid and the yield of lactic acid from glucose were 48.7 g l−1 and 95.2%, respectively, which were comparative to the results of pure glucose fermentation. The immobilized cells were quite stable and reusable, and the average yield of lactic acid from glucose in the hydrolysate was 95.0% in 12 repeated batches of fermentation. The suitable dilution rate of continuous fermentation process was 0.13 h−1, and the yield of lactic acid from glucose and the productivity were 92.4% and 5.746 g l−1 h−1, respectively. The production of lactic acid by simultaneous saccharification and fermentation (SSF) process was carried out in a coupling bioreactor, the final concentration of lactic acid was 55.6 g l−1, the conversion efficiency of lactic acid from cellulose was 91.3% and the productivity was 0.927 g l−1 h−1. By using fed-batch technique in the SSF process, the final concentration of lactic acid and the productivity increased to 107.6 g l−1 and 1.345 g l−1 h−1, respectively, while the dosage of cellulase per gram substrate decreased greatly. This research work should advance the bioconversion of renewable cellulosic resources and reduce environmental pollution.  相似文献   

12.
13.
14.
Rhodobacter capsulatus was used for the phototrophic hydrogen production on effluent solution derived from the thermophilic fermentation of Miscanthus hydrolysate by Thermotoga neapolitana. Pretreatments such as centrifugation, dilution, buffer addition, pH adjustment and sterilization were suggested for the effluent before being fed to the photofermentation. Batch-wise experiments showed that R. capsulatus grows and produces hydrogen on the pretreated effluent solution. Moreover, it was found that the hydrogen yield increased from 0.3 to 1.0 L/Lculture by addition of iron to the effluent solution.  相似文献   

15.
Ethanol production by a recombinant bacterium from wheat straw (WS) at high solid loading by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid pretreated WS (150 g/L) after enzymatic saccharification was 86.3 ± 1.5 g/L. The pretreated WS was bio-abated by growing a fungal strain aerobically in the liquid portion for 16 h. The recombinant Escherichia coli strain FBR5 produced 41.1 ± 1.1 g ethanol/L from non-abated WS hydrolyzate (total sugars, 86.6 ± 0.3 g/L) in 168 h at pH 7.0 and 35 °C. The bacterium produced 41.8 ± 0.0 g ethanol/L in 120 h from the bioabated WS by SHF. It produced 41.6 ± 0.7 g ethanol/L in 120 h from bioabated WS by fed-batch SSF. This is the first report of the production of above 4% ethanol from a lignocellulosic hydrolyzate by the recombinant bacterium.  相似文献   

16.
Compared with saccharification in the absence of yeast, simultaneous saccharification and fermentation (SSF) using Trichoderma cellulases and Saccharomyces cerevisiae enhanced cellulose hydrolysis rates by 13–30%. The optimum temperature for SSF was 35°C. The requirement for β- -glucosidase (β- -glucoside glucohydrolase, EC 3.2.1.21) in SSF was lower than for saccharification: maximal ethanol production was attained when the ratio of the activity of β- -glucosidase to filter paper activity was 1.0. Ethanol inhibited cellulases uncompetitively, with an inhibition constant of 30.5 gl −1, but its effect was less severe than that of an equivalent concentration of cellobiose or glucose. No irreversible denaturation of cellulases [1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] by ethanol was observed.  相似文献   

17.
The fermentation of hemicellulosic hydrolysate from Pinus taeda chips, using the fungal culture Rhizopus oryzae, was carried out to produce l-(+)-lactic acid and to optimize and enhance the biological conversion of reducing sugar into l-(+)-lactic acid using the experimental design to evaluate the culture conditions. The first factorial design based on surface response with five factors (agitation level, substrate concentration, CaCO3 concentration, C/N and C/P ratios) at low levels and one medium point was performed to optimize culture conditions. The second study tested two factors (substrate concentration and C/N ratio) at three levels. The statistical analysis of the data obtained from the factorial study showed that a C/N ratio of 35 and substrate concentration of 90 g/litre were the best conditions to produce l-(+)-lactic acid with R. oryzae on P. taeda hydrolysate, but in this case the statistical projection was not correct and the real optimized conditions were C/N ratio of 55 and substrate concentration of 75 g/litre of reducing sugar.  相似文献   

18.
The aim of this study was to compare the performance of the enzymes produced by Trichoderma reesei Rut C30 and the good extracellular β-glucosidase-producing mutant Trichoderma atroviride TUB F-1663 to that of commercial preparations in the enzymatic hydrolysis and the simultaneous saccharification and fermentation (SSF) of steam-pretreated spruce (SPS).The concentrated TUB F-1663 enzyme was found to be the most efficient in the hydrolysis of washed SPS at 50 g/L water-insoluble solids (WIS) in terms of the glucose produced (18.5 g/L), even in comparison with commercial cellulases (14.1–16.7 g/L). The enzyme preparations were studied at low enzyme loadings (5 FPU/g WIS) in SSF to produce ethanol from SPS. The enzyme supernatant and whole fermentation broth of T. atroviride as well as the whole broth of T. reesei proved to be as efficient in SSF as the commercial cellulase mixtures (ethanol yields of 61–76% of the theoretical were achieved), while low ethanol yields (<40%) were obtained with the β-glucosidase-deficient T. reesei supernatant.Therefore, it seems, that instead of using commercial cellulases, the TUB F-1663 enzymes and the whole broth of Rut C30 may be produced on-site, using a process stream as carbon source, and employed directly in the biomass-to-bioethanol process.  相似文献   

19.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from wheat straw hydrolysate (WSH) in batch cultures using Clostridium beijerinckii P260. In control fermentation 48.9 g L−1 glucose (initial sugar 62.0 g L−1) was used to produce 20.1 g L−1 ABE with a productivity and yield of 0.28 g L−1 h−1 and 0.41, respectively. In a similar experiment where WSH (60.2 g L−1 total sugars obtained from hydrolysis of 86 g L−1 wheat straw) was used, the culture produced 25.0 g L−1 ABE with a productivity and yield of 0.60 g L−1 h−1 and 0.42, respectively. These results are superior to the control experiment and productivity was improved by 214%. When WSH was supplemented with 35 g L−1 glucose, a reactor productivity was improved to 0.63 g L−1 h−1 with a yield of 0.42. In this case, ABE concentration in the broth was 28.2 g L−1. When WSH was supplemented with 60 g L−1 glucose, the resultant medium containing 128.3 g L−1 sugars was successfully fermented (due to product removal) to produce 47.6 g L−1 ABE, and the culture utilized all the sugars (glucose, xylose, arabinose, galactose, and mannose). These results demonstrate that C. beijerinckii P260 has excellent capacity to convert biomass derived sugars to solvents and can produce over 28 g L−1 (in one case 41.7 g L−1 from glucose) ABE from WSH. Medium containing 250 g L−1 glucose resulted in no growth and no ABE production. Mixtures containing WSH + 140 g L−1 glucose (total sugar approximately 200 g L−1) showed poor growth and poor ABE production. Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

20.
Succinic acid production from wheat using a biorefining strategy   总被引:2,自引:0,他引:2  
The biosynthesis of succinic acid from wheat flour was investigated in a two-stage bio-process. In the first stage, wheat flour was converted into a generic microbial feedstock either by fungal fermentation alone or by combining fungal fermentation for enzyme and fungal bio-mass production with subsequent flour hydrolysis and fungal autolysis. In the second stage, the generic feedstock was converted into succinic acid by bacterial fermentation by Actinobacillus succinogenes. Direct fermentation of the generic feedstock produced by fungal fermentation alone resulted in a lower succinic acid production, probably due to the low glucose and nitrogen concentrations in the fungal broth filtrate. In the second feedstock production strategy, flour hydrolysis conducted by mixing fungal broth filtrate with wheat flour generated a glucose-rich stream, while the fungal bio-mass was subjected to autolysis for the production of a nutrient-rich stream. The possibility of replacing a commercial semi-defined medium by these two streams was investigated sequentially. A. succinogenes fermentation using only the wheat-derived feedstock resulted in a succinic acid concentration of almost 16 g l–1 with an overall yield of 0.19 g succinic acid per g wheat flour. These results show that a wheat-based bio-refinery employing coupled fungal fermentation and subsequent flour hydrolysis and fungal autolysis can lead to a bacterial feedstock for the efficient production of succinic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号