首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that a significant amount of starch may reach the colon undigested and stimulate microbial fermentation. Indirect estimates of the quantity of starch reaching the colon have been obtained from breath hydrogen (H2) measurements, but numerous variables, i.e., dietary fiber source and level of intake, oral hygiene, hyperventilation, and cigarette smoking, stimulate H2 production and may exaggerate estimates of starch malabsorption. With proper controls, however, the lactulose breath H2 test based on total excess volume seems to provide a reasonable measure of the average amount of starch metabolized in the colon. Direct estimates of starch metabolism from human ileostomy studies suggest that typically less than 5% of the ingested starch escapes digestion in the small intestine. The general assumption that starch malabsorption stimulates normal colonic function, particularly with respect to colorectal carcinogenesis, is not entirely supported by the limited number of available epidemiologic studies. Further experimental studies are needed to elucidate the role of starch intake and malabsorption on colonic function and human health issues.  相似文献   

2.
Banana starch structure and digestibility   总被引:1,自引:0,他引:1  
It is well known that raw banana starch is a good source of resistant starch. Less is known, however, regarding the digestion property of gelatinized banana starch. In this study, banana starch cooked for 20 min in excess water had a significant fraction of slowly digestible starch (19%), as well as resistant fraction (27%). Amylopectin is thought to be responsible for its slow digestion property, since banana starch studied here has a relatively low amylose content of 11.2%. Chain-length distribution analysis revealed that banana amylopectin has a significantly different structure from corn or potato amylopectin in that it has a higher proportion of very long chains. Retrogradation studies support the view that banana starch retrogrades at a substantially faster rate than corn or potato starch leading to less digestible cooked starch. Additionally, banana starch has unique pasting properties making it behave like a chemically lightly cross-linked starch. Banana starch is unique, both nutritionally and functionally, to warrant further investigation on potential commercial uses.  相似文献   

3.
Banana, maize, potato and sagu starches were boiled in the presence or absence of plasticizer (glycerol), producing edible films. In vitro digestibility features, amylose content and amylopectin gel filtration behavior of films and parent starches were evaluated. Available starch contents were lower in glycerol-containing films, due to dilution by the plasticizer. Total resistant starch increased in the maize starch-based film but decreased markedly in those prepared from the other starches. Amylose content of banana starch (40%) was about double those of the other starches. Nonetheless, all starch films exhibited similar retrograded resistant starch content. Although film production led to increased -amylolysis rates, these were further augmented by additional film heating, thereby indicating that film-manufacture did not promote complete starch gelatinization. Gel filtration chromatography suggested amylopectin depolymerization after film-making, which may also increase digestion kinetics. The presence of glycerol in the films slowed down starch digestion, a feature of potential dietetic use.  相似文献   

4.
Starch fermentation by the porcine caecal anaerobe Clostridium butyricum was examined using gas and volatile fatty acid production as determinants of activity. Potato starch and amylopectin were studied in their native form as well as after retrogradation, which should render them resistant to pancreatic α-amylase digestion. Fermentation of both substrates was enhanced by pancreatin digestion of the native material, possibly due to the removal or disruption of part of the structure of the starch by the pancreatic enzymes. However, pancreatic digestion of retrograded potato starch apparently reduced the amount available for bacterial fermentation, whereas no significant effect was observed with amylopectin. The data suggests that starches which are high in amylopectin would be more likely to influence fermentation in the large intestine in monogastric animals, and that the presence of residual pancreatic enzymes in the lower gut could potentially enhance starch fermentation by this micro-organism.  相似文献   

5.
Acarbose inhibits starch digestion in the human small intestine. This increases the amount of starch available for microbial fermentation to acetate, propionate, and butyrate in the colon. Relatively large amounts of butyrate are produced from starch by colonic microbes. Colonic epithelial cells use butyrate as an energy source, and butyrate causes the differentiation of colon cancer cells. In this study we investigated whether colonic fermentation pathways changed during treatment with acarbose. We examined fermentations by fecal suspensions obtained from subjects who participated in an acarbose-placebo crossover trial. After incubation with [1-13C]glucose and 12CO2 or with unlabeled glucose and 13CO2, the distribution of 13C in product C atoms was determined by nuclear magnetic resonance spectrometry and gas chromatography-mass spectrometry. Regardless of the treatment, acetate, propionate, and butyrate were produced from pyruvate formed by the Embden-Meyerhof-Parnas pathway. Considerable amounts of acetate were also formed by the reduction of CO2. Butyrate formation from glucose increased and propionate formation decreased with acarbose treatment. Concomitantly, the amounts of CO2 reduced to acetate were 30% of the total acetate in untreated subjects and 17% of the total acetate in the treated subjects. The acetate, propionate, and butyrate concentrations were 57, 20, and 23% of the total final concentrations, respectively, for the untreated subjects and 57, 13, and 30% of the total final concentrations, respectively, for the treated subjects.  相似文献   

6.
Until the 1980s, starch in the human diet was assumed to be totally degraded and absorbed in the small intestine. Several lines of evidence since then have indicated that this is not the case, including studies of factors controlling stool output, stool bulk on elemental diets, epidemiological studies of starch intakes in developed versus developing nations, and indications using breath hydrogen that fermentation takes place in the large intestine when starch is fed. Of the few direct estimations of starch escaping absorption in the small intestine that have been carried out, one has been conducted using intubation of healthy volunteers, where two different starch meals were fed and samples aspirated from the terminal ileum. This study demonstrated that 8-10% starch escaped absorption on average, with subjects varying from 2 to 20%. Hence a sizeable proportion of starch consumed daily may reach the large intestine, with important physiological consequences. Neither small intestinal transit time nor volume of flow were related to the extent of starch malabsorption in this study. However, many factors may play a role in the extent of malabsorption, and research is continuing to investigate physiological and food characteristics that may influence the digestion and absorption of starch.  相似文献   

7.
Breath hydrogen (H2) measurements are applied in clinical medicine for the detection of carbohydrate malabsorption. H2 in expired air results when dietary sugars escape absorption in the small intestine, thereby becoming available for bacterial fermentation. H2 produced by bacterial metabolism of the carbohydrate is absorbed into the portal circulation and excreted in breath. Relatively simple collection, storage, and analysis methodologies have been developed in recent years. They permit convenient and noninvasive testing of patients in most age groups for common clinical disorders of digestion and absorption, including lactase deficiency and other disorders of di- and mono-saccharide malabsorption, starch malabsorption, and small bowel bacterial overgrowth. Limitations of breath hydrogen testing are few. Developmental considerations constrain the ease of interpretation of breath H2 measurements in early infancy, and factors affecting intraluminal H2 production by the intestinal flora may occasionally affect the H2 signal. Despite these factors, breath H2 testing has repeatedly been demonstrated to be the most accurate indirect indicator of lactase deficiency, and breath H2 measurements have been widely applied in studying digestion of the entire spectrum of dietary carbohydrates.  相似文献   

8.
Although starch provides a large fraction of human caloric intake, there is limited information concerning the efficiency of intestinal absorption of this nutrient. Owing to the fermentation of starch by colonic bacteria, there is no quantitative test for starch absorption comparable to the fecal fat determination. The most accurate estimation of starch absorption has been obtained by intubating the terminal ileum and aspirating ileal contents following ingestion of a meal containing starch plus a nonabsorbable marker. Starch absorption is calculated from the ratio of starch:marker in the ileal aspirate relative to the ratio in the meal. Disadvantages of the technique are the requirement for ileal intubation and the possible adverse effect of intubation on the absorptive process. A more widely used technique to assess starch absorption involves measurement of breath hydrogen (H2) excretion after ingestion of starch. Malabsorbed starch is fermented by colonic bacteria with liberation of H2 that is absorbed and excreted in expired air. This test is simple and noninvasive and can provide quantitative measurements of starch malabsorption. Application of this technique has demonstrated that 5-10% of starch in wheat, potatoes, and corn is not absorbed by healthy subjects, while rice starch is nearly completely absorbed.  相似文献   

9.
Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose–amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry.  相似文献   

10.
The amount of starch escaping absorption in the small intestine was measured in eight patients with symptomatic diverticular disease and eight controls. Unabsorbed starch was calculated from breath hydrogen measurements after a potato meal compared with the hydrogen response to lactulose. The proportion of unabsorbed starch was low in all the patients (mean 3.3%) and was only about a quarter of that in the controls (12.4%; p less than 0.01). These findings confirm that unabsorbed starch provides an important quantity of carbohydrate reaching the colon and suggest that super efficient starch absorption, by reducing this provision, may promote the development of diverticular disease.  相似文献   

11.
AIMS: In vitro studies have suggested that fructo-oligosaccharides (FOS) and resistant starch (two fermentable non-digestible carbohydrates) display different fermentation kinetics. This study investigated whether these substrates affect the metabolic activity and bacterial composition of the intestinal microflora differently depending on the caecocolonic segment involved. METHODS AND RESULTS: Eighteen rats were fed a low-fibre diet (Basal) or the same diet containing raw potato starch (RPS) (9%) or short-chain FOS (9%) for 14 days. Changes in wet-content weights, bacterial populations and metabolites were investigated in the caecum, proximal and distal colon and faeces. Both substrates exerted a prebiotic effect compared with the Basal diet. However, FOS increased lactic acid-producing bacteria (LAPB) throughout the caecocolon and in faeces, whereas the effect of RPS was limited to the caecum and proximal colon. As compared with RPS, FOS doubled the pool of caecal fermentation products, while the situation was just the opposite distally. This difference was mainly because of the anatomical distribution of lactate, which accumulated in the caecum with FOS and in the distal colon with RPS. Faeces reflected these impacts only partly, showing the prebiotic effect of FOS and the metabolite increase induced by RPS. CONCLUSIONS: This study demonstrates that FOS and RPS exert complementary caecocolonic effects. SIGNIFICANCE AND IMPACT OF THE STUDY: The RPS and FOS combined ingestion could be beneficial by providing health-promoting effects throughout the caecocolon.  相似文献   

12.
Acarbose inhibits starch digestion in the human small intestine. This increases the amount of starch available for microbial fermentation to acetate, propionate, and butyrate in the colon. Relatively large amounts of butyrate are produced from starch by colonic microbes. Colonic epithelial cells use butyrate as an energy source, and butyrate causes the differentiation of colon cancer cells. In this study we investigated whether colonic fermentation pathways changed during treatment with acarbose. We examined fermentations by fecal suspensions obtained from subjects who participated in an acarbose-placebo crossover trial. After incubation with [1-13C]glucose and 12CO2 or with unlabeled glucose and 13CO2, the distribution of 13C in product C atoms was determined by nuclear magnetic resonance spectrometry and gas chromatography-mass spectrometry. Regardless of the treatment, acetate, propionate, and butyrate were produced from pyruvate formed by the Embden-Meyerhof-Parnas pathway. Considerable amounts of acetate were also formed by the reduction of CO2. Butyrate formation from glucose increased and propionate formation decreased with acarbose treatment. Concomitantly, the amounts of CO2 reduced to acetate were 30% of the total acetate in untreated subjects and 17% of the total acetate in the treated subjects. The acetate, propionate, and butyrate concentrations were 57, 20, and 23% of the total final concentrations, respectively, for the untreated subjects and 57, 13, and 30% of the total final concentrations, respectively, for the treated subjects.  相似文献   

13.
Granular 2-nitropropyl potato starch was synthesized by reaction with 2-nitropropyl acetate in an aqueous suspension. Nitroalkylation occurs preferentially with the amylose fraction of potato starch, as was confirmed by leaching experiments and digestion of the modified starch with alpha-amylase. The 2-nitropropyl substituent is a mixture of the nitroalkane and nitronic acid tautomer. Some grafting occurs and to a lesser extent additional reactions (formation of carbonyls and oximes) of the nitro group take place. After catalytic hydrogenation of water soluble 2-nitropropyl starch only a small amount of the nitro functionality was reduced to the corresponding amine. Reduction of granular 2-nitropropyl starch with sodium dithionite did not go to completion and led to a complex mixture of starting material, several intermediates and side products (for example sulfamates).  相似文献   

14.
Wheat and potato starches were hydrolysed with 2·2 n hydrochloric acid at 35°C for a period of time up to 15 days. The residues (lintnerised starches) were washed and freeze dried, and studied by differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), small-angle light scattering (SALS), small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). These techniques showed that profound changes took place in the first day of hydrolysis (during which time the extent of hydrolysis was 7·7% for potato starch and 12·5% for wheat starch). In particular, the gelatinisation enthalpy (ΔH) decreased, the X-ray crystallinity increased and the SANS and SAXS peaks (indicative of a regular spacing between crystalline and amorphous regions) virtually disappeared. The reduction in ΔH is surprising and is discussed at length. It was also shown that freeze drying results in a considerable lowering of the gelatinisation temperature of potato starch (and also of ΔH) while that of wheat starch is only slightly affected.  相似文献   

15.
16.
To decrease the polyhydroxyalkanoate (PHA) production cost by supplying renewable carbon sources has been an important aspect in terms of commercializing this biodegradable polymer. The production of biodegradable poly(3-hydroxyalkanoates) (PHA) from raw potato starch by the Bacillus cereus 64-INS strain isolated from domestic sludge has been studied in a lab-scale fermenter. The bacterium was screened for the degradation of raw potato starch by a starch hydrolysis method and for PHA production by Nile blue A and Sudan black B staining. Shake-flask cultures of the bacterium with glucose [2% (w/v)] or raw potato starch [2% (w/v)] produced PHA of 64.35% and 34.68% of dry cell weight (DCW), respectively. PHA production was also carried out in a 5-L fermenter under control conditions that produced 2.78 g/L of PHA and PHA content of 60.53% after 21 hr of fermentation using potato starch as the sole carbon source. Gas chromatography–mass spectroscopy (GC-MS) analyses confirmed that the extracted PHA contained poly(3-hydroxybutyrate) (PHB) as its major constituent (>99.99%) irrespective of the carbon source used. The article describes, for what we believe to be the first time, PHB production being carried out without any enzymatic or chemical treatment of potato starch at higher levels by fermentation. More work is required to optimize the PHB yield with respect to starch feeding strategies.  相似文献   

17.
Resistant starch type 3 (RS3) is retrograded starch which is not digested by human starch degrading enzyme, and will thus undergo bacterial degradation in the colon. The main fermentation products are the Short Chain Fatty Acid (SCFA): acetate, propionate and butyrate. SCFA has significant benefit impact on the metabolism of the host. The objectives of this research were to study the SCFA profile produced by colonic butyrate producing bacteria grown in medium containing RS3. RS3 was made from sago or rice starch treated with amylase, pullulanase and the combination of amylase and pullulanase. Fermentation study was performed by using Clostridium butyricum BCC B2571 or Eubacterium rectale DSM 17629, which has been identified as capable of degradation of starch residue and also regarded as beneficial bacteria. Experimental result revealed that enzyme hydrolysis of retrograded sago or rice starch was beneficial to RS formation. RS3 derived from sago contained higher RS (31-38%) than those derived from rice starch (21-26%). This study indicated that C. butyricum BCC B2571 produced acetate, propionate and butyrate at molar ratio of 1.8 : 1 : 1, when the medium was supplemented with RSSA at concentration 1%. In the medium containing similar substrate, E. rectale DSM 17629 produced acetate, propionate and butyrate at molar ratio of 1.7 : 1 : 1.2. High levels of acetate, propionate and butyrate at molar ratio of 1.8 : 1 : 1.1 was also produced by E. rectale DSM 17629 in medium supplemented with RSSP at concentration 1%. The results showed that both bacteria responded differently to the RS3 supplementation. Such result provided insight into the possibility of designing RS3 as prebiotic with featured regarding SCFA released in the human colon with potential health implication.  相似文献   

18.
Klebsiella oxytoca P2(pC46), an ethanol-producing recombinant, has been evaluated in fermentation of maltose and starch. The maximum ethanol produced by P2(pC46) was 0.34 g ethanol/g maltose and 0.38, 0.40, or 0.36 g ethanol/g starch in fermentation of 1, 2, or 4% starch, representing 68, 71, and 64% the theoretical yield. The pC46 plasmid transformed to cells of K. oxytoca P2 reduced the ethanol production from maltose and starch. In fermentation of starch after its digestion at 60 degrees C for 24 h, in two-step fermentation, the time for maximum ethanol production was reduced to 12-24 h and the theoretical yield was around 90%. The increase in starch concentration resulted in lower alpha-amylase activity but in higher pullulanase activity. The high activity and thermostability of the amylolytic enzymes from this transformant suggest that it has a potential for amylolytic enzymes source.  相似文献   

19.
The digestibility of different forms of starch was examined in an ileostomy model. Six otherwise healthy ileostomists were fed a controlled polysaccharide-free diet for four days, on three of which a test starch was added at breakfast. 50 g starch was fed as either whole or homogenized chick peas or as a retrograded starch gel. A readily digestible wheat starch biscuit was used as a control. Ileostomy effluent was collected every 2 hours over a 16 hour period and a final collection made at 24 hours after the test meal. The monosaccharide composition and glycosyl linkages of the residual carbohydrate in the 2 hour peak period following the test meal was determined. Following consumption of the starch gel, poly- and oligo-saccharides from mucin and starch were identified in the effluent. At the peak of effluent production following the test meal, the average ratio of starch polysaccharide to mucin was 1:0.4. Of the 50 g of starch consumed, 7% of the starch escaped digestion in this fraction. Following consumption of cooked, cooled chick peas, which were fed whole or homogenized, polysaccharides deriving from starch, mucin and the cell wall were detected in the effluent. It was estimated from comparison of the composition of the food and effluent that 14% and 16% of the ingested starch in the form of homogenized and whole chick peas had escaped digestion in the small intestine. Linkage analysis showed the chemical structure of the starch escaping digestion after feeding the whole and homogenized chick peas was similar to that obtained after feeding the starch gel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号