首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Studies on long-term effects of plants grown at elevated CO(2) are scarce and mechanisms of such responses are largely unknown. To gain mechanistic understanding on respiratory acclimation to elevated CO(2), the Crassulacean acid metabolism Mediterranean invasive Opuntia ficus-indica Miller was grown at various CO(2) concentrations. Respiration rates, maximum activity of cytochrome c oxidase, and active mitochondrial number consistently decreased in plants grown at elevated CO(2) during the 9 months of the study when compared to ambient plants. Plant growth at elevated CO(2) also reduced cytochrome pathway activity, but increased the activity of the alternative pathway. Despite all these effects seen in plants grown at high CO(2), the specific oxygen uptake rate per unit of active mitochondria was the same for plants grown at ambient and elevated CO(2). Although decreases in photorespiration activity have been pointed out as a factor contributing to the long-term acclimation of plant respiration to growth at elevated CO(2), the homeostatic maintenance of specific respiratory rate per unit of mitochondria in response to high CO(2) suggests that photorespiratory activity may play a small role on the long-term acclimation of respiration to elevated CO(2). However, despite growth enhancement and as a result of the inhibition in cytochrome pathway activity by elevated CO(2), total mitochondrial ATP production was decreased by plant growth at elevated CO(2) when compared to ambient-grown plants. Because plant growth at elevated CO(2) increased biomass but reduced respiratory machinery, activity, and ATP yields while maintaining O(2) consumption rates per unit of mitochondria, we suggest that acclimation to elevated CO(2) results from physiological adjustment of respiration to tissue ATP demand, which may not be entirely driven by nitrogen metabolism as previously suggested.  相似文献   

2.
Bunce JA 《Annals of botany》2005,95(6):1059-1066
BACKGROUND AND AIMS: Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO(2)] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO(2)] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. METHODS: Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO(2)] and at ambient plus 350 micromol mol(-1) [CO(2)] in open top chambers. Measurements were made on pairs of leaves from both [CO(2)] treatments on a total of 16 d during the middle of the growing seasons of two years. KEY RESULTS: Elevated [CO(2)] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m(-2) d(-1) (1.4 micromol m(-2) s(-1)) for both the ambient and elevated [CO(2)] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO(2)], and respiration per unit of mass was significantly lower at elevated [CO(2)]. Respiration increased by a factor of 2.5 between 18 and 26 degrees C average night temperature, for both [CO(2)] treatments. CONCLUSIONS: These results do not support predictions that elevated [CO(2)] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights.  相似文献   

3.
Abstract. There have been seven studies of canopy photosynthesis of plants grown in elevated atmospheric CO2: three of seed crops, two of forage crops and two of native plant ecosystems. Growth in elevated CO2 increased canopy photosynthesis in all cases. The relative effect of CO2 was correlated with increasing temperature: the least stimulation occurred in tundra vegetation grown at an average temperature near 10°C and the greatest in rice grown at 43°C. In soybean, effects of CO2 were greater during leaf expansion and pod fill than at other stages of crop maturation. In the longest running experiment with elevated CO2 treatment to date, monospecific stands of a C3 sedge, Scirpus olneyi (Grey), and a C4 grass, Spartina patens (Ait.) Muhl., have been exposed to twice normal ambient CO2 concentrations for four growing seasons, in open top chambers on a Chesapeake Bay salt marsh. Net ecosystem CO2 exchange per unit green biomass (NCEb) increased by an average of 48% throughout the growing season of 1988, the second year of treatment. Elevated CO2 increased net ecosystem carbon assimilation by 88% in the Scirpus olneyi community and 40% in the Spartina patens community.  相似文献   

4.
Amellal  N.  Bartoli  F.  Villemin  G.  Talouizte  A.  Heulin  T. 《Plant and Soil》1999,211(1):93-101
We investigated plant and soil nitrogen pools and soil processes in monospecific stands of the C3 sedge Scirpus olneyi and the C4 grass Spartina patens grown in the field in open top chambers in a brackish marsh on the Chesapeake Bay. Stands of S. olneyi responded to eight years of elevated CO2, by increased rates of net ecosystem gas exchange and a large stimulation of net ecosystem production. We conducted our study in the summer of 1994 and 1995 when soil cores were collected and aboveground biomass was estimated. Nitrogen concentration in elevated CO2 treatments was reduced 15% in stems of S. olneyi and 8% in the upper 10 cm of the soil profile. While total plant nitrogen per unit of land area remained the same between treatments, total soil nitrogen showed a non-significant tendency to decrease in the upper 10 cm of the soil profile in elevated CO2 both years of study. A significant decrease in soil bulk density largely contributed to the observed decrease in soil nitrogen. Exchangeable nitrogen and potential denitrification rates were also reduced in elevated CO2, but net nitrogen mineralization was unchanged by elevated CO2 treatment in S. olneyi both years. Plants and soils in a pure stand of the C4 grass, S. patens, showed none of these effects of elevated CO2 treatment. Our data provides evidence of changes in nitrogen dynamics of an ecosystem exposed to elevated CO2 for eight years; however due to the variability in these data, we cannot say if or how these changes are likely to impact the effect of rising CO2 on primary production or carbon accumulation in this ecosystem in the future.  相似文献   

5.
大气CO2浓度倍增对植物暗呼吸的影响   总被引:9,自引:0,他引:9  
以长期生长于350和700μmolCO_2·mol~(-1)空气的开顶式培养室的杜仲(Eucommia ulmoides Oliv.)、紫花苜蓿(Medicago sativa L.)、玉米(Zea mays L.)等10种植物的离体成熟叶片或整株为材料,研究不同测定温度(15~35℃)下,CO_2浓度倍增对植物暗呼吸的影响。结果表明:在较低温度(15℃、20℃)下,CO_2浓度倍增对植物暗呼吸没有显著效应,在较高温度(30℃、35℃)下多数被测植物的暗呼吸显著增强。讨论了实验所得结果在未来全球气候变化中的可能的意义。  相似文献   

6.
Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].  相似文献   

7.
Elevated CO2, rhizosphere processes,and soil organic matter decomposition   总被引:12,自引:0,他引:12  
Cheng  Weixin  Johnson  Dale W. 《Plant and Soil》1998,202(2):167-174
The rhizosphere is one of the key fine-scale components of C cycles. This study was undertaken to improve understanding of the potential effects of atmospheric CO2 increase on rhizosphere processes. Using C isotope techniques, we found that elevated atmospheric CO2 significantly increased wheat plant growth, dry mass accumulation, rhizosphere respiration, and soluble C concentrations in the rhizosphere. When plants were grown under elevated CO2 concentration, soluble C concentration in the rhizosphere increased by approximately 60%. The degree of elevated CO2 enhancement on rhizosphere respiration was much higher than on root biomass. Averaged between the two nitrogen treatments and compared with the ambient CO2 treatment, wheat rhizosphere respiration rate increased 60% and root biomass only increased 26% under the elevated CO2 treatment. These results indicated that elevated atmospheric CO2 in a wheat-soil system significantly increased substrate input to the rhizosphere due to both increased root growth and increased root activities per unit of roots. Nitrogen treatments changed the effect of elevated CO2 on soil organic matter decomposition. Elevated CO2 increased soil organic matter decomposition (22%) in the nitrogen-added treatment but decreased soil organic matter decomposition (18%) without nitrogen addition. Soil nitrogen status was therefore found to be important in determining the directions of the effect of elevated CO2 on soil organic matter decomposition.  相似文献   

8.
生长在高CC2浓度(700±56μl  相似文献   

9.
Ten species of plants were grown at ambient (350μmol CO2·mol-1 air) and doubled (700 μmol CO2·mol-1 air) CO2 concentrations at ambient temperature and illumination in order to examine changes of dark respiration of whole seedlings or detached leaves. Effects of CO2 on dark respiration were determined by brief exposure ( ≤ 5 min) to corresponding CO2 concentration and temperatures ( 15,20,25,30 and 35 ℃ ) with infrared CO2 analyzer. The reductions in dark respiration on a weight base for leaves of East-Liaoning oak (Quercus liaotungensis Koidz. ) at 15,20 and 25 ℃ and of soybean ( Glycine max L. ) at 20,25,30 and 35 ℃ and for whole seedlings of three- tcoloured amaranth (Amaranthus tricolor L. ) at 15 and 20 ℃ and cucumber ( Cucumis sativus L. ) at 15 cE measured at elevated concentration relative to the ambient CO2 concentration were observed. No significant difference in respiration responded was observed to elevated or ambient CO2 concentrations at 15 ℃ in maize (Zea mays L. ) seedlings and alfalfa (Medicago sativa L. ) leaves, at 35 ℃ in East-Liaoning oak leaves and at 20,25 and 30 ℃ in three-coloured amaranth seedlings. However CO2 efflux in leaves of weeping willow (Salix babylonica L. ), simon poplar (Populus simonii Carr. ) and eucommia (Eucommia ulmoides Oliv. ) at 15,20,25,30 and 35 ℃, alfalfa at 20,25,30 and 35 ℃, East-Liaoning oak at 30 ℃, maize at 15 ℃, seedlings of common buckwheat (Fagotrytum esculentum Moench) at 15,20,25,30 and 35 ℃, cucumber and maize at 20,25,30 and 35 ℃ and three-coloured amaranth at 35 ℃ showed an increase at elevated in contrast to ambient CO2 concentration. In general, at lower temperatures (i. e. 15, 20 ℃ ) there was no significant difference between elevated and ambient CO2 concentration for dark respiration, while at higher temperatures (i. e. 30,35 ℃ ) elevated CO2 concentration positively stimulate clark respiretion. It has not yet been described that double CO2 concentration could enhance plant dark respiration at 30 and 35 ℃. Impacts of the characteristics in dark respiration on the future changes of vegetation and its mechanism were discussed.  相似文献   

10.
This study examined the impact of season-long exposure to elevated carbon dioxide (CO2) and ozone (O3), individually and in combination, on leaf chlorophyll content and gas exchange characteristics in potato (Solanum tuberosum L. cv. Bintje). Plants grown in open-top chambers were exposed to three CO2 (ambient, 550 and 680 μmol mol-1) and two O3 treatments (ambient and elevated; 25 and 65 nmol mol-1, 8 h day-1 means, respectively) between crop emergence and maturity; plants were also grown in unchambered field plots. Non-destructive measurements of chlorophyll content and visible foliar injury were made for all treatments at 2-week intervals between 43 and 95 days after emergence. Gas exchange measurements were made for all except the intermediate 550 μmol mol-1 CO2 treatment. Season-long exposure to elevated O3 under ambient CO2 reduced chlorophyll content and induced extensive visible foliar damage, but had little effect on net assimilation rate or stomatal conductance. Elevated CO2 had no significant effect on chlorophyll content, but greatly reduced the damaging impact of O3 on chlorophyll content and visible foliar damage. Light-saturated assimilation rates for leaves grown under elevated CO2 were consistently lower when measured under either elevated or ambient CO2 than in equivalent leaves grown under ambient CO2. Analysis of CO2 response curves revealed that CO2-saturated assimilation rate, maximum rates of carboxylation and electron transport and respiration decreased with time. CO2-saturated assimilation rate was reduced by elevated O3 during the early stages of the season, while respiration was significantly greater under elevated CO2 as the crop approached maturity. The physiological origins of these responses and their implications for the performance of potato in a changing climate are discussed.  相似文献   

11.
Content and activity of Rubisco and concentrations of leaf nitrogen, chlorophyll and total non-structural carbohydrates (TNC) were determined at regular intervals during the 1993 and 1994 growing seasons to understand the effects and interactions of [O3] and elevated [CO2] on biochemical limitations to photosynthesis during ontogeny. Soybean (Glycine max var. Essex) was grown in open-top field chambers in either charcoal-filtered air (CF, 20 nmol mol-1) or non-filtered air supplemented with 1.5 x ambient [O3] (c. 80 nmol mol-1) at ambient (AA, 360 mol mol-1) or elevated [CO2] (700 mol mol-1). Sampling period significantly affected all the variables examined. Changes included a decrease in the activity and content of Rubisco during seed maturation, and increased nitrogen (N), leaf mass per unit area (LMA) and total non-structural carbohydrates (TNC, including starch and sucrose) through the reproductive phases. Ontogenetic changes were most rapid in O2-treated plants. At ambient [CO2], O3 decreased initial activity (14-64% per unit leaf area and 14-29% per unit Rubisco) and content of Rubisco (9-53%), and N content per unit leaf area. Ozone decreased LMA by 17-28% of plants in CF-AA at the end of the growing season because of a 24-41% decrease in starch and a 59-80% decrease in sucrose. In general, elevated CO2], in CF or O3-fumigated air, reduced the initial activity of Rubisco and activation state while having little effect on Rubisco content, N and the chlorophyll content, per unit leaf area. Elevated CO2 decreased Rubisco activity by 14-34% per unit leaf area and 15-25% per unit Rubisco content of plants in grown CF-AA, nd increases LMA by 27-74% of the leaf mass per unit area in CF-AA because of a 23-148% increase in starch. However, the data suggest that, at elevated [CO2], increases in starch and sucrose are not directly responsible for the deactivation of Rubisco. Also, there was little evidence of an adjustment of Rubisco activity in response to starch and sucrose metabolism. Significant interactions between elevated [CO2] and [O3] on all variables examined generally resulted in alleviation or amelioration of the O3 effects at elevated CO2. These data provide further support to the idea that elevated atmospheric CO2 will reduce or prevent damage from pollutant O3.  相似文献   

12.
den Hertog  J.  Stulen  I.  Lambers  H. 《Plant Ecology》1993,104(1):369-378
The response ofPlantago major ssp,pleiosperma plants, grown on nutrient solution in a climate chamber, to a doubling of the ambient atmospheric CO2 concentration was investigated. Total dry matter production was increased by 30% after 3 weeks of exposure, due to a transient stimulation of the relative growth rate (RGR) during the first 10 days. Thereafter RGR returned to the level of control plants. Photosynthesis, expressed per unit leaf area, was stimulated during the first two weeks of the experiment, thereafter it dropped and nearly reached the level of the control plants. Root respiration was not affected by increased atmospheric CO2 levels, whereas shoot, dark respiration was stimulated throughout the experimental period. Dry matter allocation over leaves stems and roots was not affected by the CO2 level. SLA was reduced by 10%, which can partly be explained by an increased dry matter content of the leaves. Both in the early and later stages of the experiment, shoot respiration accounted for a larger part of the carbon budget in plants grown at elevated atmospheric CO2. Shifts in the total carbon budget were mainly due to the effects on shoot respiration. Leaf growth accounted for nearly 50% of the C budget at all stages of the experiment and in both treatments.Abbreviations LAR leaf area ratio - LWR leaf weight ratio - RGR relative growth rate - R/S root to shoot ratio - RWR root weight ratio - SLA specific leaf area - SWR stem weight ratio  相似文献   

13.
The detection of 12CO2 emission from leaves in air containing 13CO2 allows simple and fast determination of the CO2 emitted by different sources, which are separated on the basis of their labelling velocity. This technique was exploited to investigate the controversial effect of CO2 concentration on mitochondrial respiration. The 12CO2 emission was measured in illuminated and darkened leaves of one C4 plant and three C3 plants maintained at low (30-50 ppm), atmospheric (350-400 ppm) and elevated (700-800 ppm) CO2 concentration. In C3 leaves, the 12CO2 emission in the light (Rd) was low at ambient CO2 and was further quenched in elevated CO2, when it was often only 20-30% of the 12CO2 emission in the dark, interpreted as the mitochondrial respiration in the dark (Rn). Rn was also reduced in elevated CO2. At low CO2, Rd was often 70-80% of Rn, and a burst of 12CO2 was observed on darkening leaves of Mentha sativa and Phragmites australis after exposure for 4 min to 13CO2 in the light. The burst was partially removed at low oxygen and was never observed in C4 leaves, suggesting that it may be caused by incomplete labelling of the photorespiratory pool at low CO2. This pool may be low in sclerophyllous leaves, as in Quercus ilex where no burst was observed. Rd was inversely associated with photosynthesis, suggesting that the Rd/Rn ratio reflects the refixation of respiratory CO2 by photosynthesizing leaves rather than the inhibition of mitochondrial respiration in the light, and that CO2 produced by mitochondrial respiration in the light is mostly emitted at low CO2, and mostly refixed at elevated CO2. In the leaves of the C4 species Zea mays, the 12CO2 emission in the light also remained low at low CO2, suggesting efficient CO2 refixation associated with sustained photosynthesis in non-photorespiratory conditions. However, Rn was inhibited in CO2-free air, and the velocity of 12CO2 emission after darkening was inversely associated with the CO2 concentration. The emission may be modulated by the presence of post-illumination CO2 uptake deriving from temporary imbalance between C3 and C4 metabolism. These experiments suggest that this uptake lasts longer at low CO2 and that the imbalance is persistent once it has been generated by exposure to low CO2.  相似文献   

14.
Watling JR  Press MC  Quick WP 《Plant physiology》2000,123(3):1143-1152
We analyzed the impact of growth at either 350 (ambient) or 700 (elevated) microL L(-1) CO(2) on key elements of the C(4) pathway (photosynthesis, carbon isotope discrimination, and leaf anatomy) using the C(4) cereal sorghum (Sorghum bicolor L. Moench.). Gas-exchange analysis of the CO(2) response of photosynthesis indicated that both carboxylation efficiency and the CO(2) saturated rate of photosynthesis were lower in plants grown at elevated relative to ambient CO(2). This was accompanied by a 49% reduction in the phosphoenolpyruvate carboxylase content of leaves (area basis) in the elevated CO(2)-grown plants, but no change in Rubisco content. Despite the lower phosphoenolpyruvate carboxylase content, there was a 3-fold increase in C isotope discrimination in leaves of plants grown at elevated CO(2) and bundle sheath leakiness was estimated to be 24% and 33%, respectively, for the ambient and elevated CO(2)-grown plants. However, we could detect no difference in quantum yield. The ratio of quantum yield of CO(2) fixation to PSII efficiency was lower in plants grown at elevated CO(2), but only when leaf internal was below 50 microL L(-1). This suggests a reduction in the efficiency of the C(4) cycle when [CO(2)] is low, and also implies increased electron transport to acceptors other than CO(2). Analysis of leaf sections using a transmission electron microscope indicated a 2-fold decrease in the thickness of the bundle sheath cell walls in plants grown at elevated relative to ambient CO(2). These results suggest that significant acclimation to increased CO(2) concentrations occurs in sorghum.  相似文献   

15.
To understand how the increase in atmospheric CO2 from human activity may affect leaf damage by forest insects, we examined host plant preference and larval performance of a generalist herbivore, Antheraea polyphemus Cram., that consumed foliage developed under ambient or elevated CO2. Larvae were fed leaves from Quercus alba L. and Quercus velutina Lam. grown under ambient or plus 200 microl/liter CO2 using free air carbon dioxide enrichment (FACE). Lower digestibility of foliage, greater protein precipitation capacity in frass, and lower nitrogen concentration of larvae indicate that growth under elevated CO2 reduced the food quality of oak leaves for caterpillars. Consuming leaves of either oak species grown under elevated CO2 slowed the rate of development of A. polyphemus larvae. When given a choice, A. polyphemus larvae preferred Q. velutina leaves grown under ambient CO2; feeding on foliage of this species grown under elevated CO2 led to reduced consumption, slower growth, and greater mortality. Larvae compensated for the lower digestibility of Q. alba leaves grown under elevated CO2 by increasing the efficiency of conversion of ingested food into larval mass. Despite equivalent consumption rates, larvae grew larger when they consumed Q. alba leaves grown under elevated compared with ambient CO2. Reduced consumption, slower growth rates, and increased mortality of insect larvae may explain lower total leaf damage observed previously in plots in this forest exposed to elevated CO2. By subtly altering aspects of leaf chemistry, the ever-increasing concentration of CO2 in the atmosphere will change the trophic dynamics in forest ecosystems.  相似文献   

16.
不同氮营养水平下草莓叶片光合作用对高CO2浓度的适应   总被引:2,自引:0,他引:2  
研究了不同氮素水平(12mmol/L,4mmol/L,0、4mmol/L)下生长的‘丰香’草莓在富C02(700μL/L)和大气CO(390μL/L)下的光合作用。结果表明,高氮(12mmol/L)下,在富CO2环境中生长的‘丰香’草莓叶片未出现光合作用下调,富CO2下草莓叶片的净光合速率、最大羧化速率(Vc.max)、最大电子传递速率(Jmax)、碳同化的电子传递速率(Jc)和光化学猝灭系数(qp)等均显著提高;而在中氮(4mmol/L)、低氮(0.4mmol/L)下,富CO2下生长的草莓叶片的上述参数均出现不同程度的下降。富CO2下,无论氮素水平如何,草莓叶片的光呼吸电子传递速率(Jo)均降低高氮草莓叶片的非光化学猝灭系数(qN或NPQ)降低,光抑制降低,而低氮则相反。上述结果说明,氮素供应不足时草莓叶片在富CO2下光合作用出现下调,因此生产上进行CO2施肥时应适度增加氮素的供应。  相似文献   

17.
Humans are increasing atmospheric CO2, ground-level ozone (O3), and mean and acute high temperatures. Laboratory studies show that elevated CO2 can increase thermotolerance of photosynthesis in C3 plants. O3-related oxidative stress may offset benefits of elevated CO2 during heat-waves. We determined effects of elevated CO2 and O3 on leaf thermotolerance of field-grown Glycine max (soybean, C3). Photosynthetic electron transport (φet) was measured in attached leaves heated in situ and detached leaves heated under ambient CO2 and O3. Heating decreased φet, which O3 exacerbated. Elevated CO2 prevented O3-related decreases during heating, but only increased φet under ambient O3 in the field. Heating decreased chlorophyll and carotenoids, especially under elevated CO2. Neither CO2 nor O3 affected heat-shock proteins. Heating increased catalase (except in high O3) and CulZn-superoxide dismutase (SOD), but not MnSOD; CO2 and O3 decreased catalase but neither SOD. Soluble carbohydrates were unaffected by heating, but increased in elevated CO2. Thus, protection of photosynthesis during heat stress by elevated CO2 occurs in field-grown soybean under ambient O3, as in the lab, and high CO2 limits heat damage under elevated O3, but this protection is likely from decreased photorespiration and stomatal conductance rather than production of heat-stress adaptations.  相似文献   

18.
Prediction of the impact of climate change requires the response of carbon (C) flow in plant-soil systems to increased CO(2) to be understood. A mechanism by which grassland C sequestration might be altered was investigated by pulse-labelling Lolium perenne swards, which had been subject to CO(2) enrichment and two levels of nitrogen (N) fertilization for 10 yr, with (14)CO(2). Over a 6-d period 40-80% of the (14)C pulse was exported from mature leaves, 1-2% remained in roots, 2-7% was lost as below-ground respiration, 0.1% was recovered in soil solution, and 0.2-1.5% in soil. Swards under elevated CO(2) with the lower N supply fixed more (14)C than swards grown in ambient CO(2), exported more fixed (14)C below ground and respired less than their high-N counterparts. Sward cutting reduced root (14)C, but plants in elevated CO(2) still retained 80% more (14)C below ground than those in ambient CO(2). The potential for below-ground C sequestration in grasslands is enhanced under elevated CO(2), but any increase is likely to be small and dependent upon grassland management.  相似文献   

19.
Photosynthetic acclimation to elevated CO2 in a sunflower canopy   总被引:3,自引:0,他引:3  
Sunflower canopies were grown in mesocosom gas exchange chambers at ambient and elevated CO2 concentrations (360 and 700 ppm) and leaf photosynthetic capacities measured at several depths within each canopy. Elevated [CO2] had little effect on whole-canopy photosynthetic capacity and total leaf area, but had marked effects on the distribution of photosynthetic capacity and leaf area within the canopy. Elevated [CO2] did not significantly reduce the photosynthetic capacities per unit leaf area of young leaves at the top of the canopy, but it did reduce the photosynthetic capacities of older leaves by as much as 40%. This effect was not dependent on the canopy light environment since elevated [CO2] also reduced the photosynthetic capacities of older leaves exposed to full sun on the south edge of the canopy. In addition to the effects on leaf photosynthetic capacity, elevated [CO2] shifted the distribution of leaf area within the canopy so that more leaf area was concentrated near the top of the canopy. This change resulted in as much as a 50% reduction in photon flux density in the upper portions of the elevated [CO2] canopy relative to the ambient [CO2] canopy, even though there was no significant difference in the total canopy leaf area. This reduction in PFD appeared to account for leaf carbohydrate contents that were actually lower for many of the shaded leaves in the elevated as opposed to the ambient [CO2] canopy. Photosynthetic capacities were not significantly correlated with any of the individual leaf carbohydrate contents. However, there was a strong negative correlation between photosynthetic capacity and the ratio of hexose sugars to sucrose, consistent with the hypothesis that sucrose cycling is a component of the biochemical signalling pathway controlling photosynthetic acclimation to elevated [CO2].  相似文献   

20.
J. Taylor  A. S. Ball 《Plant and Soil》1994,162(2):315-318
The biodegradability of aerial material from a C4 plant, sorghum grown under ambient (345 µmol mol–1) and elevated (700 µmol mol–1) atmospheric CO2 concentrations were compared by measuring soil respiratory activity. Initial daily respiratory activity (measured over 10 h per day) increased four fold from 110 to 440 cm3 CO2 100g dry weight soil–1 in soils amended with sorghum grown under either elevated or ambient CO2. Although soil respiratory activity decreased over the following 30 days, respiration remained significantly higher (t-test;p>0.05) in soils amended with sorghum grown under elevated CO2 concentrations. Analysis of the plant material revealed no significant differences in C:N ratios between sorghum grown under elevated or ambient CO2. The reason for the differences in soil respiratory activity have yet to be elucidated. However if this trend is repeated in natural ecosystems, this may have important implications for C and N cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号