首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choi JH  Shin YL  Kim GH  Seo EJ  Kim Y  Park IS  Yoo HW 《Hormone research》2005,63(6):294-299
BACKGROUND: Endocrine abnormalities, including hypocalcemia, thyroid dysfunction, and short stature, are associated with chromosome 22q11.2 microdeletion syndrome. This study was undertaken to examine the frequencies and clinical features of endocrine abnormalities in patients with 22q11.2 microdeletion syndrome. METHODS: We analyzed 61 patients with 22q11.2 microdeletion syndrome diagnosed based on the verification of microdeletion by fluorescent in situ hybridization (FISH) using a probe of the DiGeorge syndrome critical region (TUPLE1) at 22q11.2 and a control probe, ARSA at 22q13. Serum total calcium, phosphorus, and intact parathyroid hormone (PTH) levels were measured, thyroid function test was performed, and serum IGF-1 and IGFBP-3 levels were also estimated. Height and weight of patients were compared with individual chronological ages. RESULTS: Hypocalcemia was found in 20 patients (32.8%), and overt hypoparathyroidism in 8 (13.1%). Two patients (3.3%) showed autoimmune thyroid diseases, 1 each with Graves' disease and Hashimoto thyroiditis. Ten patients (16.4%) were below the third percentile in height, but the serum IGF-1 level was normal in 9 out of these 10 patients. CONCLUSION: Our findings show that patients with chromosome 22q11.2 microdeletion syndrome present with variable endocrine manifestations and variable clinical phenotypes. In addition to FISH analysis, careful endocrine evaluations are required in patients with this microdeletion syndrome, particularly for those with hypoparathyroidism or thyroid dysfunction.  相似文献   

2.
Microdeletions of 17q12 including the hepatocyte nuclear factor 1 beta (HNF1B) gene, as well as point mutations of this gene, are associated with the Renal Cysts and Diabetes syndrome (RCAD, OMIM 137920) and genitourinary alterations. Also, microdeletions encompassing HNF1B were identified as a cause of Mayer–Rokitansky–Küster–Hauser Syndrome (MRKH, OMIM 277000) in females and, recently, were associated with intellectual disability, autistic features, cerebral anomaly and facial dysmorphisms.  相似文献   

3.
We led a clinical and molecular characterization of a patient with mild mental delay and dysmorphic features initially referred for cytogenetic exploration of an azoospermia. We employed FISH and array CGH techniques for a better definition and refinement of a double chromosome aberration associating a 17p microdeletion with partial monosomy 21q due to 1:3 meiotic segregation of a maternal reciprocal translocation t(17;21)(p13.3;q21.2) revealed after banding analysis. Brain MRI depicted partial callosal and mild diffuse cerebral atrophies, but without expected signs of lissencephaly. The patient's karyotype formula was: 45,XY,der(17)t(17;21)(p13.3;q21.2)mat,-21. FISH study confirmed these rearrangements and array CGH analysis estimated the loss sizes to at least 635 kb on chromosome 17 and to 15.6 Mb on chromosome 21. The absence of lissencephaly and major brain malformations often associated with 17p terminal deletions could be attributed to the retention of PAFAH1B1, YWHAE and CRK genes. Dysmorphic features, moderate mental impairment and minor brain malformations could result from the 21q monosomy and particularly the partial deletion of the APP-SOD1 region. Azoospermia should result from gamete apoptosis induced by a control mechanism triggered in response to chromosome imbalances. Our study provides an additional case for better understanding and delineating both 17p and 21q deletions.  相似文献   

4.
5.
We describe an uncommon association of deletion 22q11 in a patient with Klinefelter syndrome. Even though congenital heart defects (CHD) are not associated with Klinefelter syndrome, further investigation of this patient with patent ductus arteriosus showed a microdeletion of chromosome 22q11.2. While this finding may be coincidental, it is important to further evaluate patients when the clinical features are suggestive of a secondary abnormality.  相似文献   

6.
7.
8.
Partial trisomy 9q: a new syndrome.   总被引:2,自引:0,他引:2  
Two unrelated patients with a strikingly similar phenotype (low birth weight and poor thriving; mental retardation; dolichocephaly; beaked nose; deeply set eyes; prominent maxilla and receding small chin; long fingers with a peculiar clench) were partially trisomic for two different segments of 9q. The segment found to be trisomic in both patients is small and corresponds to the q31q32 region. This new syndrome is compared to observations of trisomy 9 reported in the literature.  相似文献   

9.
10.
We report a case of partial proximal trisomy of the long arm of chromosome 10 confirmed by fluorescence in situ hibridization (FISH) performed with whole chromosome 10 specific painting and specific yac clones. The phenotypic findings, compared to those found in other published cases with the same karyotype, support the recognition of a distinctive partial proximal trisomy 10q syndrome (10q11-->q22).  相似文献   

11.
12.
This review of the diagnosis, causes, prevention and treatment of hypocalcemia emphasizes the high incidence of this biological alteration in patients with 22q11 microdeletion. It also points out its large spectrum of presentation, from cases where the most prominent feature of the syndrome is hypocalcemia with hypoparathyroidism, to cases with asymptomatic, latent or late-onset hypocalcemia. Hence, the advice to perform genetic analysis of the 22q11 region in patients with late-onset or recurrent hypoparathyroidism and to systematically include serum calcium in the survey of patients with known 22q11 microdeletion, especially during infancy, adolescence and pregnancy and especially during cardiac surgery or sepsis.  相似文献   

13.
Recurrent deletions have been associated with numerous diseases and genomic disorders. Few, however, have been resolved at the molecular level because their breakpoints often occur in highly copy-number-polymorphic duplicated sequences. We present an approach that uses a combination of somatic cell hybrids, array comparative genomic hybridization, and the specificity of next-generation sequencing to determine breakpoints that occur within segmental duplications. Applying our technique to the 17q21.31 microdeletion syndrome, we used genome sequencing to determine copy-number-variant breakpoints in three deletion-bearing individuals with molecular resolution. For two cases, we observed breakpoints consistent with nonallelic homologous recombination involving only H2 chromosomal haplotypes, as expected. Molecular resolution revealed that the breakpoints occurred at different locations within a 145 kbp segment of >99% identity and disrupt KANSL1 (previously known as KANSL1). In the remaining case, we found that unequal crossover occurred interchromosomally between the H1 and H2 haplotypes and that this event was mediated by a homologous sequence that was once again missing from the human reference. Interestingly, the breakpoints mapped preferentially to gaps in the current reference genome assembly, which we resolved in this study. Our method provides a strategy for the identification of breakpoints within complex regions of the genome harboring high-identity and copy-number-polymorphic segmental duplication. The approach should become particularly useful as high-quality alternate reference sequences become available and genome sequencing of individuals'' DNA becomes more routine.  相似文献   

14.
We have analyzed a recently described 22q13.3 microdeletion in a child with some overlapping features of the cytologically visible 22q13.3 deletion syndrome. Patient NT, who shows mild mental retardation and delay of expressive speech, was previously found to have a paternal microdeletion in the subtelomeric region of 22q. In order to characterize this abnormality further, we have constructed a cosmid/P1 contig covering the terminal 150 kb of 22q, which encompasses the 130-kb microdeletion. The microdeletion breakpoint is within the VNTR locus D22S163. The cloning of the breakpoint sequence revealed that the broken chromosome end was healed by the addition of telomeric repeats, indicating that the microdeletion is terminal. This is the first cloned terminal deletion breakpoint on a human chromosome other than 16p. The cosmid/P1 contig was mapped by pulsed-field gel electrophoresis analysis to within 120 kb of the arylsulfatase A gene, which places the contig in relation to genetic and physical maps of the chromosome. The acrosin gene maps within the microdeletion, approximately 70 kb from the telomere. With the distal end of chromosome 22q cloned, it is now possible to isolate genes that may be involved in the overlapping phenotype of this microdeletion and 22q13.3 deletion syndrome.  相似文献   

15.
16.
We report the case of a child with 22q11 microdeletion who presented with abdominal lymphatic dysplasia resulting in exsudative enteropathy. This primitive and localized lymphatic malformation is consistent with the vascular theory in the velocardiofacial syndrome.  相似文献   

17.
18.
Monosomy 7 and interstitial deletions in the long arm of chromosome 7 (−7/7q−) is a common nonrandom chromosomal abnormality found frequently in myeloid disorders including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and juvenile myelomonocytic leukemia (JMML). Using a short probe-based microarray comparative genomic hybridization (mCGH) technology, we identified a common microdeletion cluster in 7q21.3 subband, which is adjacent to ‘hot deletion region’ thus far identified by conventional methods. This common microdeletion cluster contains three poorly characterized genes; Samd9, Samd9L, and a putative gene LOC253012, which we named Miki. Gene copy number assessment of three genes by real-time PCR revealed heterozygous deletion of these three genes in adult patients with AML and MDS at high frequency, in addition to JMML patients. Miki locates to mitotic spindles and centrosomes and downregulation of Miki by RNA interference induced abnormalities in mitosis and nuclear morphology, similar to myelodysplasia. In addition, a recent report indicated Samd9 as a tumor suppressor. These findings indicate the usefulness of the short probe-based CGH to detect microdeletions. The three genes located to 7q21.3 would be candidates for myeloid tumor-suppressor genes on 7q.  相似文献   

19.
Deletions of the distal short arm of chromosome 1 (1p36) represent a common, newly delineated deletion syndrome, characterized by moderate to severe psychomotor retardation, seizures, growth delay, and dysmorphic features. Previous cytogenetic underascertainment of this chromosomal deletion has made it difficult to characterize the clinical and molecular aspects of the syndrome. Recent advances in cytogenetic technology, particularly FISH, have greatly improved the ability to identify 1p36 deletions and have allowed a clearer definition of the clinical phenotype and molecular characteristics of this syndrome. We have identified 14 patients with chromosome 1p36 deletions and have assessed the frequency of each phenotypic feature and clinical manifestation in the 13 patients with pure 1p36 deletions. The physical extent and parental origin of each deletion were determined by use of FISH probes on cytogenetic preparations and by analysis of polymorphic DNA markers in the patients and their available parents. Clinical examinations revealed that the most common features and medical problems in patients with this deletion syndrome include large anterior fontanelle (100%), motor delay/hypotonia (92%), moderate to severe mental retardation (92%), growth delay (85%), pointed chin (80%), eye/vision problems (75%), seizures (72%), flat nasal bridge (65%), clinodactyly and/or short fifth finger(s) (64%), low-set ear(s) (59%), ear asymmetry (57%), hearing deficits (56%), abusive behavior (56%), thickened ear helices (53%), and deep-set eyes (50%). FISH and DNA polymorphism analysis showed that there is no uniform region of deletion but, rather, a spectrum of different deletion sizes with a common minimal region of deletion overlap.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号