首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A new family of thirteen phosphoramidate prodrugs (ProTides) of different 6-substituted-5-fluorouridine nucleoside analogues were synthesized and evaluated as potential anticancer agents. In addition, antiviral activity against Chikungunya (CHIKV) virus was evaluated using a cytopathic effect inhibition assay. Although a carboxypeptidase Y assay supported a putative mechanism of activation of ProTides built on 5-fluorouridine with such C6-modifications, the Hint docking studies revealed a compromised substrate-activity for the Hint phosphoramidase-type enzyme that is likely responsible for phosphoramidate bioactivation through P–N bond cleavage and free nucleoside 5′-monophosphate delivery. Our observations may support and explain to some extent the poor in vitro biological activity generally demonstrated by the series of 6-substituted-5-fluorouridine phosphoramidates (ProTides) and will be of guidance for the design of novel phosphoramidate prodrugs.  相似文献   

2.
Development of fatty acid synthase (FAS) inhibitors has increasingly attracted much attention in recent years due to their potential therapeutic use in obesity and cancers. In this investigation, pharmacophore modeling based on the first crystal structure of human KS domain of FAS was carried out. The established pharmacophore model was taken as a 3D query for retrieving potent FAS inhibitors from the chemical database Specs. Docking study was further carried out to refine the obtained hit compounds. Finally, a total of 28 compounds were selected based on the ranking order and visual examination, which were first evaluated by a cell line-based assay. Seven compounds that have good inhibition activity against two FAS overexpressing cancer cell lines were further evaluated by an enzyme-based assay. One compound with a new chemical scaffold was found to have low micromolar inhibition potency against FAS, which has been subjected to further chemical structural modification.  相似文献   

3.

Background

Farnesyl pyrophosphate synthase (FPPS) is a key regulatory enzyme in the biosynthesis of cholesterol and in the post-translational modification of signaling proteins. It has been reported that non-bisphosphonate FPPS inhibitors targeting its allosteric binding pocket are potentially important for the development of promising anti-cancer drugs.

Methods

The following methods were used: organic syntheses of non-bisphosphonate quinoline derivatives, enzyme inhibition studies, fluorescence titration assays, synergistic effect studies of quinoline derivatives with zoledronate, ITC studies for the binding of FPPS with quinoline derivatives, NMR-based HAP binding assays, molecular modeling studies, fluorescence imaging assay and MTT assays.

Results

We report our syntheses of a series of quinoline derivatives as new FPPS inhibitors possibly targeting the allosteric site of the enzyme. Compound 6b showed potent inhibition to FPPS without significant hydroxyapatite binding affinity. The compound showed synergistic inhibitory effect with active-site inhibitor zoledronate. ITC experiment confirmed the good binding effect of compound 6b to FPPS, and further indicated the binding ratio of 1:1. Molecular modeling studies showed that 6b could possibly bind to the allosteric binding pocket of the enzyme. The fluorescence microscopy indicated that these compounds could get into cancer cells.

Conclusions

Our results showed that quinoline derivative 6b could become a new lead compound for further optimization for cancer treatment.

General significance

The traditional FPPS active-site inhibitors bisphosphonates show poor membrane permeability to tumor cells, due to their strong polarity. The development of new non-bisphosphonate FPPS inhibitors with good cell membrane permeability is potentially important.  相似文献   

4.
双酚A暴露对东亚三角涡虫急性毒性及神经酶的影响   总被引:1,自引:0,他引:1  
旨在探讨双酚A (BPA)对东亚三角涡虫的急性毒性及神经系统相关酶活性的影响。采用不同浓度的BPA处理涡虫24 h、48 h、72 h,求出半致死浓度,以此为基础,采用不同浓度的BPA处理涡虫24 h、72 h、144 h,测定AchE、ChAT及Na+~K+^-ATP酶活性。BPA对三角涡虫的24 h、48 h、72 h,LC50分别为12.18 mg/L、8.49 mg/L、6.43 mg/L。ChE、ChAT、Na+~K+^-ATP酶活性对BPA反应敏感,具有较好的规律性。24 h处理组,AChE酶活力随BPA浓度的升高而升高,72 h和144 h处理组则呈现先上升后下降的趋势,除0.643 mgBPA/L以外,其它处理组均表现出了时间-效应关系;在BPA胁迫下,ChAT酶活力均呈现降低趋势,在BPA浓度为0.643 mg/L、1.286 mg/L时,表现出了时间-效应关系;24 h、72 h处理组Na+~K+^-ATP酶活力随BPA浓度升高呈现先上升后下降的趋势,144 h处理组则呈现下降趋势,Na+~K+^-ATP酶活力随BPA胁迫时间的延长呈现先升高后下降的趋势。BPA对涡虫具有较强的生态毒性,AchE、ChAT、Na+~K+^-ATP酶活性可与其他敏感指标一起作为水体BPA污染的早期监测指标。  相似文献   

5.
酵母菌中SOD复合酶的初步研究   总被引:1,自引:0,他引:1  
对不同酵母菌中SOD等抗氧化酶的活性进行了初步的分析测定,筛选出了一株诸酶活性都较高的菌株(丹宝利面包活性干酵母)。研究了该酵母在不同培养时期SOD等酶少力的变化情况,发现POD、CAT等酶的活性水平SOD活性的变化有密切的相关性。通过比较几种提取方法的效果,认为利用甲苯破壁法提取SOD复合酶具有一定的可行性。  相似文献   

6.
Pectin methylesterases (PMEs) catalyze pectin demethylation and facilitate the determination of the degree of methyl esterification of cell wall in higher plants. The regulation of PME activity through endogenous proteinaceous PME inhibitors (PMEIs) alters the status of pectin methylation and influences plant growth and development. In this study, we performed a PMEI screening assay using a chemical library and identified a strong inhibitor, phenylephrine (PE). PE, a small molecule, competitively inhibited plant PMEs, including orange PME and Arabidopsis PME. Physiologically, cultivation of Brassica campestris seedlings in the presence of PE showed root growth inhibition. Microscopic observation revealed that PE inhibits elongation and development of root hairs. Molecular studies demonstrated that Root Hair Specific 12 (RHS12) encoding a PME, which plays a role in root hair development, was inhibited by PE with a Ki value of 44.1?μM. The biochemical mechanism of PE-mediated PME inhibition as well as a molecular docking model between PE and RHS12 revealed that PE interacts within the catalytic cleft of RHS12 and interferes with PME catalytic activity. Taken together, these findings suggest that PE is a novel and non-proteinaceous PME inhibitor. Furthermore, PE could be a lead compound for developing a potent plant growth regulator in agriculture.  相似文献   

7.
Summary Increasing concerns over the effects of environmental estrogens on wildlife and humans have highlighted the need for screening systems to assess potentially estrogenic effects of test compounds. As a result, in vitro screening methods such as cell proliferation assays using the estrogen-responsive human breast cancer cell line, MCF-7, have been developed. The present study describes an alternative in vitro approach for the assessment of such xenoestrogens, based on estrogenic rescue of MCF-7 cells from antiestrogen-induced cytotoxicity. This method measures the ability of various estrogenic compounds to compete with a known estrogen-receptor-mediated antihormonal drug, 4-hydroxytamoxifen, using the 1-[4,5-dimethylthiazol-2-yl]-3,5-diphenylformazan (MTT) assay to assess mitochondrial activity. Because 4-hydroxytamoxifen treatment of cells results in a dramatic decrease in mitochondrial dehydrogenase activity which is directly related to their estrogen-receptor content, inhibition of this effect with estrogenic compounds represents an estrogen-receptor interaction, or estrogenic rescue. The estrogenic compounds tested include a weak xenoestrogen, bisphernol A (BPA), and two biological estrogens, 17α- and 17β-estradiol. Competitive inhibition of 4-hydroxytamoxifen-induced cytotoxicity by BPA was compared to that of the biological estrogens. The results indicate that the biological estrogens can successfully compete with the antiestrogen in a dose-dependent manner. In addition, the assay is sensitive enough to detect estrogenic rescue by even the very weak xenoestrogen, BPA, albeit at high BPA concentrations. This simple in vitro method could be used as an alternative or second-line screen for potential xenoestrogens.  相似文献   

8.
The current chemotherapy against Chagas disease is inadequate and insufficient. A series of ten Mannich base-type derivatives have been synthesized to evaluate their in vitro antichagasic activity. After a preliminary screening, compounds 7 and 9 were subjected to in vivo assays in a murine model. Both compounds caused a substantial decrease in parasitemia in the chronic phase, which was an even better result than that of the reference drug benznidazole. In addition, compound 9 also showed better antichagasic activity during the acute phase. Moreover, metabolite excretion, effect on mitochondrial membrane potential and the inhibition of superoxide dismutase (SOD) studies were also performed to identify their possible mechanism of action. Finally, docking studies proposed a binding mode of the Fe-SOD enzyme similar to our previous series, which validated our design strategy. Therefore, the results suggest that these compounds should be considered for further preclinical evaluation as antichagasic agents.  相似文献   

9.
W F Beyer  Y Wang  I Fridovich 《Biochemistry》1986,25(20):6084-6088
Phosphate was reported to be an inhibitor of copper- and zinc-containing superoxide dismutase (SOD) [de Freitas, D.M., & Valentine, J.S. (1984) Biochemistry 23, 2079-2082]. Thus SOD activity, in 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.4), was decreased by approximately 50% when the assay was made 10 mM in phosphate, and the ionic strength was adjusted with sodium fluoride. The inhibitory effect of phosphate was attributed to the neutralization of the positive charge on the guanidino residue of Arg-141. We have reexamined the effects of phosphate inhibition of SOD and found that the enzyme has identical activity in phosphate or HEPES buffer when the ionic strength is adjusted with NaBr. The putative inhibitory effect of phosphate appears to have been due to fluoride inhibition of the superoxide generating system of xanthine/xanthine oxidase. We have confirmed this result by using a photochemical generation of O2- in addition to the enzymatic generation of O2-. Chemical modification of the lysine residues to homoarginines does not affect the activity of the enzyme and does not impart a phosphate sensitivity. Chemical modification with phenylglyoxal caused approximately 80% inactivation of the native enzyme and 90% inactivation of the O-methylisourea-modified enzyme. Our results suggest that phosphate does not inhibit the copper- and zinc-containing superoxide dismutase (Cu,Zn-SOD) beyond the expectations of its effect on ionic strength.  相似文献   

10.
BACE-1 is considered to be one of the targets for prevention and treatment of Alzheimer’s disease (AD). We here report a novel class of semi-synthetic derivatives of prenylated isoflavones, obtained from the derivatization of natural flavonoids from Maclura pomifera. In vitro anti-AD effect of the synthesized compounds were evaluated via human recombinant BACE-1 inhibition assay. Compound 7, 8 and 13 were found to be the most active candidates which demonstrates good correlation between the computational docking and pharmacokinetic predictions. Moreover, cytotoxic studies demonstrated that the compounds are not toxic against normal and cancer cell lines. Among these three compounds, compound 7 enhance the activity of P-glycoprotein (P-gp) on A549 cancer cells and increases the activity of P-gp ATPase with a possible role on the efflux of amyloid-β across the blood- brain barrier. In conclusion, the present findings may pave the way for the discovery of a novel class of compounds to prevent and/or treat AD.  相似文献   

11.
The enzyme dipeptidyl-peptidase IV (DPP-IV) is recognized to be a promising target for the management of type 2 diabetes. Over the last decade, numerous synthetic molecules and more recently, peptides from dietary proteins, have been reported to be able to inhibit DPP-IV activity. Most studies that have investigated the in vitro effect of these inhibitors have used porcine or human DPP-IV. Although structurally alike, it is unclear whether these two species display similar inhibition patterns. Therefore, the objective of this study was to compare the effects of protein-derived peptides on the activity of porcine and recombinant human DPP-IV. The two species showed different inhibition susceptibility to 43 of the 62 peptide sequences investigated. While 37 protein-derived peptides were more effective at inhibiting the porcine DPP-IV, only six caused a stronger inhibition of the activity of the human enzyme. Although the peptides WR, IPIQY and WCKDDQNPHS were found to be among the most potent inhibitors of both species, the inhibitory effect was greater on the porcine enzyme than on human DPP-IV (αKi or Ki = 11.5, 13.4, 13.3 μM and 31.4, 28.2, 75.0 μM for porcine and human DPP-IV, respectively). Investigation into the mode of action of the most effective inhibitory peptides revealed that both species were inhibited in a similar manner by short fragments (≤5 amino acid residues), but that some of the longer peptides acted differently on the enzymes. This study shows that porcine DPP-IV is generally inhibited with greater potency by protein-derived peptides than is the human enzyme.  相似文献   

12.
A series of imidazopyridinyl-1,3,4-oxadiazole conjugates were synthesized and investigated for their cytotoxic activity and some compounds showed promising cytotoxic activity. Compound 8q (NSC: 763639) exhibited notable growth inhibition that satisfies threshold criteria at single dose (10 μM) on all human cancer cell lines. This compound was further evaluated at five dose levels (0.01, 0.1, 1, 10 and 100 μM) to obtain GI50 values ranging from 1.30 to 5.64 μM. Flow cytometric analysis revealed that compound 8q arrests the A549 cells in sub G1 phase followed by induction of apoptosis which was further confirmed by Annexin-V-FITC, Hoechst nuclear staining, caspase 3 activation, measurement of mitochondrial membrane potential and ROS generation. Topo II mediated DNA relaxation assay results showed that conjugate 8q could significantly inhibit the activity of topo II. Moreover, molecular docking studies also indicated binding to the topoisomerase enzyme (PDBID 1ZXN).  相似文献   

13.
14.
In this study, a series of shikonin derivatives combined with benzoylacrylic had been designed and synthesized, which showed an inhibitory effect on both tubulin and the epidermal growth factor receptor (EGFR). In vitro EGFR and cell growth inhibition assay demonstrated that compound PMMB-317 exhibited the most potent anti-EGFR (IC50 = 22.7 nM) and anti-proliferation activity (IC50 = 4.37 μM) against A549 cell line, which was comparable to that of Afatinib (EGFR, IC50 = 15.4 nM; A549, IC50 = 6.32 μM). Our results on mechanism research suggested that, PMMB-317 could induce the apoptosis of A549 cells in a dose- and time-dependent manner, along with decrease in mitochondrial membrane potential (MMP), production of ROS and alterations in apoptosis-related protein levels. Also, PMMB-317 could arrest cell cycle at G2/M phase to induce cell apoptosis, and inhibit the EGFR activity through blocking the signal transduction downstream of the mitogen-activated protein MAPK pathway and the anti-apoptotic kinase AKT pathway; typically, such results were comparable to those of afatinib. In addition, PMMB-317 could suppress A549 cell migration through the Wnt/β-catenin signaling pathway in a dose-dependent manner. Additionally, molecular docking simulation revealed that, PMMB-317 could simultaneously combine with EGFR protein (5HG8) and tubulin (1SA0) through various forces. Moreover, 3D-QSAR study was also carried out, which could optimize our compound through the structure-activity relationship analysis. Furthermore, the in vitro and in vivo results had collectively confirmed that PMMB-317 might serve as a promising lead compound to further develop the potential therapeutic anticancer agents.  相似文献   

15.
Ecto-nucleotidase members i.e., ecto-5′-nucleotidase and alkaline phosphatase, hydrolyze extracellular nucleotides and play an important role in purinergic signaling. Their overexpression are implicated in a variety of pathological states, including immunological diseases, bone mineralization, vascular calcification and cancer, and thus they represent an emerging drug targets. In order to design potent and selective inhibitors, new derivatives of 4-aminopyridine have been synthesized (10a-10m) and their structures were established on the basis of spectral data. The effect of nature and position of substituent was interestingly observed and justified on the basis of their detailed structure activity relationships (SARs) against both families of ecto-nucleotidase. Compound 10a displayed significant inhibition (IC50 ± SEM = 0.25 ± 0.05 µM) that was found ≈168 fold more potent as compared to previously reported inhibitor suramin (IC50 ± SEM = 42.1 ± 7.8 µM). This compound exhibited 6 times more selectivity towards h-TNAP over h-e5′NT. The anticancer potential and mechanism were also established using cell viability assay, flow cytometric analysis and nuclear staining. Molecular docking studies were also carried out to gain insight into the binding interaction of potent compounds within the respective enzyme pockets and herring-sperm DNA.  相似文献   

16.
Microbes that have gained resistance against antibiotics pose a major emerging threat to human health. New targets must be identified that will guide the development of new classes of antibiotics. The selective inhibition of key microbial enzymes that are responsible for the biosynthesis of essential metabolites can be an effective way to counter this growing threat. Aspartate semialdehyde dehydrogenases (ASADHs) produce an early branch point metabolite in a microbial biosynthetic pathway for essential amino acids and for quorum sensing molecules. In this study, molecular modeling and docking studies were performed to achieve two key objectives that are important for the identification of new selective inhibitors of ASADH. First, virtual screening of a small library of compounds was used to identify new core structures that could serve as potential inhibitors of the ASADHs. Compounds have been identified from diverse chemical classes that are predicted to bind to ASADH with high affinity. Next, molecular docking studies were used to prioritize analogs within each class for synthesis and testing against representative bacterial forms of ASADH from Streptococcus pneumoniae and Vibrio cholerae. These studies have led to new micromolar inhibitors of ASADH, demonstrating the utility of this molecular modeling and docking approach for the identification of new classes of potential enzyme inhibitors.  相似文献   

17.
目的 以钙调蛋白磷酸酶(CN)为靶酶,从中草药中寻找高效、低毒的免疫抑制剂.方法 以CN为靶点,筛选并分离能够抑制其活性的天然化合物.在细胞和动物水平评价该化合物的免疫抑制效果及毒副作用,并通过荧光猝灭、分子对接、免疫印迹、双荧光素酶报告基因、实时定量PCR等实验探究天然化合物与CN的作用机理及可能的免疫抑制作用机制....  相似文献   

18.
Abstract

Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer, and therefore PTK inhibitors are currently under intense investigation as potential drug candidates. PTK inhibitor screening data are, however, poorly comparable because of the different assay technologies used. Here we report a comparison of ELISA-based assays for screening epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitory compound libraries to study interassay variations. All assays were based on the same protocol, except for the source of EGFR-TK enzymes. In the first protocol, the enzyme was isolated from A431 cells without affinity purification. In the second protocol, commercial EGFR-TK (Sigma) isolated from A431 cells by affinity-purification was employed. In the third protocol, an enzyme preparation obtained from a recombinant (Baculovirus transfected Sf9 cells) expression system was used. All assays employed the synthetic peptide substrate poly-(Glu, Tyr)1:4 and an ELISA-based system to detect phosphorylated tyrosine residues by a monoclonal antibody. We observed significant differences in both the activity of the enzymes and in the EGFR-TK inhibitory effect of our reference compound PD153035. The differences were significant in case of A431 cell lysate compared to affinity purified EGFR-TKs derived from either A431cells or Baculovirus transfected Sf9 cells, whereas the latter two showed comparable results. Our data suggest that differences in terms of interassay variation are not related to the source of the enzyme but to its purity; changes in the mode of detection can markedly influence the reproducibility of results. In conclusion, normalization of the EGFR activity used for inhibitor screening and standardization of detection methods enable safe comparison of data.  相似文献   

19.
Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas’ disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases.  相似文献   

20.
Long QT syndrome, either inherited or acquired from drug treatments, can result in ventricular arrhythmia (torsade de pointes) and sudden death. Human ether-a-go-go-related gene (hERG) channel inhibition by drugs is now recognized as a common reason for the acquired form of long QT syndrome. It has been reported that more than 100 known drugs inhibit the activity of the hERG channel. Since 1997, several drugs have been withdrawn from the market due to the long QT syndrome caused by hERG inhibition. Food and Drug Administration regulations now require safety data on hERG channels for investigative new drug (IND) applications. The assessment of compound activity on the hERG channel has now become an important part of the safety evaluation in the process of drug discovery. During the past decade, several in vitro assay methods have been developed and significant resources have been used to characterize hERG channel activities. However, evaluation of compound activities on hERG have not been performed for large compound collections due to technical difficulty, lack of throughput, and/or lack of biological relevance to function. Here we report a modified form of the FluxOR thallium flux assay, capable of measuring hERG activity in a homogeneous 1536-well plate format. To validate the assay, we screened a 7-point dilution series of the LOPAC 1280 library collection and reported rank order potencies of ten common hERG inhibitors. A correlation was also observed for the hERG channel activities of 10 known hERG inhibitors determined in this thallium flux assay and in the patch clamp experiment. Our findings indicate that this thallium flux assay can be used as an alternative method to profile large-volume compound libraries for compound activity on the hERG channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号