首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel biosorbent silk cotton hull, an agrowaste material, has been successfully utilized for the removal of cadmium(II) from aqueous solutions. The adsorption of cadmium onto three kinds of activated biosorbent has been studied: modified by concentrated sulfuric acid alone (AC), a mixture of concentrated sulfuric acid and hydrogen peroxide (AC1), and a mixture of concentrated sulfuric acid and ammonium persulfate (AC2). The adsorption studies were carried out to optimize the process parameters such as pH, adsorbent dosage, contact time, and initial metal ion concentration. Maximum metal removal was observed at pH 7.0 with a contact time of 90 min at stirring speed of 200 rpm with an adsorbent dosage of 4.0 g L?1. The sorption isotherms were studied using the Langmuir, Freundlich, and Tempkin isotherm models. The maximum adsorption capacities were 100.00, 142.86, and 142.87 mg g?1 for AC, AC1, and AC2, respectively. Accordingly, the surface modification of the activated carbons AC1 and AC2 enhanced cadmium removal greatly. The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. The sorption mechanism is discussed in terms of the activated surface properties. A relationship between the oxygen content and sorption was found in this novel material. Desorption experiments were carried out using hydrochloric acid with a view to generate the spent adsorbent and to recover the adsorbed metal ions.  相似文献   

2.
Coir pith was chemically modified for the adsorption of cobalt(II) ions from aqueous solution. Chemical modification was done by esterification using succinic anhydride followed by activation with NaHCO(3) in order to improve the adsorption of Co(II). Adsorptive removal of Co(II) from aqueous solution onto modified coir pith was evaluated in batch studies under varying conditions of agitation time and metal ion concentration to assess the kinetic and equilibrium parameters. A pseudo-second-order kinetic model fitted well for the sorption of Co(II) onto modified coir pith. Sorption kinetics showed that the loading of Co(II) by this material was quite fast under ambient conditions. The Langmuir and Freundlich equilibrium isotherm models provided excellent fits for the adsorption data, with R(2) of 0.99 and 0.98, respectively. After esterification, the maximum Co(II) sorption loading Q(0); was greatly improved. It is evident that chemically modified adsorbent exhibits better Co(II) removal capability than raw adsorbent suggesting that surface modification of the adsorbent generates more adsorption sites on its solid surface for metal adsorption. A complete recovery of the adsorbed metal ions from the spent adsorbent was achieved by using 1.0N HCl.  相似文献   

3.
The shell of the seed of Chrysophyllum albidum carbon was used to adsorb lead (Pb) from aqueous solution, the sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration, and particle size on adsorption were also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The first-order rate equation by Lagergren was tested on the kinetic data and the adsorption process followed first-order rate kinetics. Isotherm data were analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms; the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 72.1 mg Pb (II) g- 1 at initial pH of 5.0 at 30°C for the particle size of 1.00 to 1.25 mm with the use of 2.0 g/100 ml adsorbent mass. The structural features of the adsorbent were characterized by Fourier transform infrared (FTIR) spectrometry; the presence of hydroxyl, carbonyl, amide, and phosphate groups confirms the potential mechanism adsorption of the adsorbent. This readily available adsorbent is efficient in the uptake of Pb (II) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

4.
The removal of Cu(II) from aqueous solutions by Ulothrix zonata   总被引:3,自引:0,他引:3  
In this work, adsorption of copper(II) ions on alga has been studied by using batch adsorption techniques. The equilibrium biosorption level was determined as a function of contact time at several initial metal ion concentrations. The effect of adsorbent concentration on the amount adsorbed was also investigated. The experimental adsorption data were fitted to the Langmuir adsorption model. The free energy change (deltaG0) for the adsorption process was found to be -12.60 kJ/mol. The results indicated that the biomass of Ulothrix zonata is a suitable biosorbent for both the removal and recovery of heavy metals from wastewater.  相似文献   

5.
The adsorption of Cd2+ and Pb2+ on sugar beet pulp (SBP), a low-cost material, has been studied. In the present work, the abilities of native (SBP) to remove cadmium (Cd2+) and lead (Pb2+) ions from aqueous solutions were compared. The (SBP) an industrial by product and solid waste of sugar industry were used for the removal of Cd2+ and Pb2+ ions from aqueous water. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, adsorbent dose, initial metal ion concentration, and time on uptake. The sorption process was relatively fast and equilibrium was reached after about 70 min of contact. As much as 70-75% removal of Cd2+ and Pb2+ ions for (SBP) are possible in about 70 min, respectively, under the batch test conditions. Uptake of Cd2+ and Pb2+ ions on (SBP) showed a pH-dependent profile. The overall uptake for the (SBP) is at a maximum at pH 5.3 and gives up to 46.1 mg g(-1) for Cd2+ and at pH 5.0 and gives 43.5 mg g(-1) for Pb2+ for (SBP), which seems to be removed exclusively by ion exchange, physical sorption and chelation. A dose of 8 gL(-1) was sufficient for the optimum removal of both the metal ions. The Freundlich represented the sorption data for (SBP). In the presence of 0.1M NaNO3 the level of metal ion uptake was found to reach its maximum value very rapidly with the speed increasing both with the (SPB) concentration and with increasing initial pH of the suspension. The reversibility of the process was investigated. The desorption of Cd2+ and Pb2+ ions which were previously deposited on the (SBP) back into the deionised water was observed only in acidic pH values during one day study period and was generally rather low. The extent of adsorption for both metals increased along with an increase of the (SBP) dosage. (SBP), which is cheap and highly selective, therefore seems to be a promising substrate to entrap heavy metals in aqueous solutions.  相似文献   

6.
Humic acid (HA) produced from brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove toxic metals from aqueous solution. The influence of five parameters (contact time, solution pH, initial metal concentration, temperature and amount of adsorbent) on the removal at 20+/-1 degrees C was studied. HAs were prepared from lignites by using alkaline extraction, sedimentation and acidic precipitation. Adsorption equilibrium was achieved in about 60 min for Cr3+ ion. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The maximum adsorption capacity of 0.17 mmol for Ilgin (HA1), 0.29 mmol for Beysehir (HA2) and 0.18 mmol Ermenek (HA3) and 0.17 mmol of Cr3+/g for activated carbon (AC) was achieved, respectively at pH of 4.1. More than 84% of Cr3+ was removed by HA2, 54% by HA3 and 51% by HA1 and 50% by AC from aqueous solution. The adsorption was strongly dependent on pH but independent of ionic strength and metal ions. The adsorption of Cr3+ was higher between pH 4.1 and 5.1 for all HAs and maximum sorption was observed at pH 4.1. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr3+ ion. Complex mechanisms including ion exchange, complexation and adsorption and size exclusion are possible for sorption of Cr3+ ion on HAs.  相似文献   

7.
The efficacy of the bark of Eucalyptus tereticornis (Smith) as an adsorbent for the removal of metal ions and sulphate from acid mine water was assessed. About 96% of Fe, 75% of Zn, 92% of Cu and 41% of sulphate removal was achieved from the acid mine water of pH 2.3 with a concomitant increase in pH value by about two units after interaction with the tree bark, under appropriate conditions. The adsorption isotherms adhered to Freundlich and Langmuir relationships and were exothermic in nature. The free energy of the adsorption process was found to be negative attesting to the feasibility of the reaction. The adsorption kinetics followed the first-order Lagergren rate equation. The filtrate obtained after treatment with E. tereticornis (Sm) bark was found to contain essential elements like potassium, magnesium, calcium, sodium and phosphate apart from carbon which served as a successful growth medium for the sulphate reducing bacteria (SRB) namely Desulfotomaculum nigrificans. Bacterial growth studies showed that about 57% and 72% of sulphate reduction could be achieved at initial pH values of 4.1 and 5.5 respectively of the acid mine water. Pretreatment of the acid mine water with tree bark followed by bioremoval using Dsm. nigrificans resulted in about 75% and 84% respectively of sulphate reduction at pH 4.1 and 5.5, cumulatively by biosorption and bioreduction. The mechanisms of metal ion removal using tree bark and sulphate reduction using Dsm. nigrificans are discussed.  相似文献   

8.
9.
The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g?1, respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution.  相似文献   

10.
Removal of chromium from industrial waste by using eucalyptus bark   总被引:6,自引:0,他引:6  
Several low cost biomaterials such as baggase, charred rice husk, activated charcoal and eucalyptus bark (EB) were tested for removal of chromium. All the experiments were carried out in batch process with laboratory prepared samples and wastewater obtained from metal finishing section of auto ancillary unit. The adsorbent, which had highest chromium(VI) removal was EB. Influences of chromium concentration, pH, contact time on removal of chromium from effluent was investigated. The adsorption data were fitted well by Freundlich isotherm. The kinetic data were analyzed by using a first order Lagergren kinetic. The Gibbs free energy was obtained for each system and was found to be -1.879 kJ mol(-1) for Cr(VI) and -3.885 kJ mol(-1) for Cr(III) for removal from industrial effluent. The negative value of deltaG0 indicates the feasibility and spontaneous nature of adsorption. The maximum removal of Cr(VI) was observed at pH 2. Adsorption capacity was found to be 45 mg/g of adsorbent, at Cr(VI) concentration in the effluent being 250 mg/l. A waste water sample containing Cr(VI), Cr(III), Mg, and Ca obtained from industrial unit showed satisfactory removal of chromium. The results indicate that eucalyptus bark can be used for the removal of chromium.  相似文献   

11.
This paper describes activation of pine cone with Fenton reagent and determines the removal of Cd(II) and Pb(II) ions from aqueous solution. Changes of the surface properties of adsorbent materials were determined by the FT-IR and SEM analysis after activation of pine cone. The effect of Fe(2+)/H(2)O(2) ratio, ORP, pH and contact time were determined. Different adsorption isotherms were also obtained using concentrations of heavy metal ions ranging from 0.1 to 150mgL(-1). The adsorption process follows pseudo-first-order reaction kinetics and follows the Langmuir adsorption isotherm. The study discusses thermodynamic parameters, including changes in Gibbs free energy, entropy, and enthalpy, for the adsorption of Cd(II) and Pb(II) on activated cone, and revealed that the adsorption process was spontaneous and exothermic under natural conditions. The maximum removal efficiencies were obtained as 91% and 89% at pH 7 with 90 and 105-min contact time for Cd(II) and Pb(II), respectively.  相似文献   

12.
Removal and recovery of molybdate from aqueous solution was investigated using ZnCl2 activated carbon developed from coir pith. Studies were conducted to delineate the effects of contact time, adsorbent dose, molybdate concentration, pH and temperature. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 18.9 mg molybdate/g of the adsorbent. Adsorption followed second order kinetics. Studies were performed at different pH values to find out the pH at which maximum adsorption occurred. The pH effect and desorption studies showed that ion exchange and chemisorption mechanism were involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. Effect of foreign ions on adsorption of molybdate has been examined. The results showed that ZnCl2 activated coir pith carbon was effective for the removal and recovery of molybdate from water.  相似文献   

13.
Applications of IDA in, for example, immobilized metal ion affinity chromatography for purification of His-tagged proteins are well recognized. The use of IDA as an efficient chelating adsorbent for environmental separations, that is, for the capture of heavy metals, is not studied. Adsorbents based on supermacroporous gels (cryogels) bearing metal chelating functionalities (IDA residues and ligand derived from derivatization of epoxy-cryogel with tris(2-aminoethyl)amine followed by the treatment with bromoacetic acid (defined as TBA ligand)) have been prepared and evaluated on capture of heavy metal ions. The cryogels were prepared in plastic carriers, resulting in desired mechanical stability and named as macroporous gel particles (MGPs). Sorption and desorption experiments for different metals (Cu2+, Zn2+, Cd2+, and Ni2+ with IDA adsorbent and Cu2+ and Zn2+ with TBA adsorbent) were carried out in batch and monolithic modes, respectively. Obtained capacities with Cu2+ were 74 μmol/mL (TBA) and 19 μmol/mL gel (IDA). The metal removal was higher for pH values between pH 3 and 5. Both adsorbents showed improved sorption at lower temperatures (10°C) than at higher (40°C) and the adsorption significantly dropped for the TBA adsorbent and Zn2+ at 40°C. Desorption of Cu2+ by using 1 M HCl and 0.1 M EDTA was successful for the IDA adsorbent whereas the desorption with the TBA adsorbent needs further attention. The result of this work has demonstrated that MGPs are potential treatment alternatives within the field of environmental separations and the removal of heavy metals from water effluents.  相似文献   

14.
Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.  相似文献   

15.
The adsorption of copper(II) ions on to dehydrated wheat bran (DWB), a by-product of the flour process, was investigated as a function of initial pH, temperature, initial metal ion concentration and adsorbent dosage. The optimum adsorption conditions were initial pH 5.0, initial copper concentration 100 mg l−1, temperature 60 °C and adsorbent dosage 0.1 g. The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 51.5 mg g−1 of copper(II) ions on DWB. The observation of an increase in adsorption with increasing temperature leads to the result that the adsorption of copper(II) ions on DWB is endothermic in nature. The thermodynamic parameters such as enthalpy, free energy and entropy changes were calculated and these values show that the copper(II)-DWB adsorption process was favoured at high temperatures.  相似文献   

16.
An efficient and cost effective non-conventional adsorbent has been prepared from seaweed Laminaria japonica by crosslinking with epichlorohydrin. Its adsorption behavior for trivalent and divalent metal ions was studied and it was found to exhibit excellent selectivity towards several metal ions. As a typical example, binary mixture of Pb(II) and Zn(II) was studied by using a packed column, indicating that the Pb(II) ion can be easily separated from its mixture with a concentration factor of 74 times. The maximum adsorption capacity for Pb(II), Cd(II), Fe(III) was found to be 1.35, 1.1, 1.53 mol kg(-1), respectively, while 0.8 7 mol kg(-1) for both La(III) and Ce(III) from the single metal ion solution according to the adsorption isotherm. The obtained values are comparable to the commercially available synthetic chelating resins.  相似文献   

17.
α-Amylase from Bacillus amyloliquefaciens was purified by the immobilized metal ion affinity adsorbent, β-CDcl-IDA-Cu2+. The adsorbent was prepared by reacting the cross-linked β-cyclodextrin (β-CD) with the ligand, iminodiacetic acid (IDA). The copper ion was further linked to the adsorbent. Poly(ethylene glycol) (PEG) was added to the fermentation broth to improve the adsorption efficiency of the adsorbent toward α-amylase. The effort was to provide hydrophobic interactions with the impurities which might interfere with the adsorption of α-amylase. It also provided a polymer shielding effect to prevent non-specific interactions. With the addition of PEG, the adsorption efficiency could be increased to 98%. Imidazole containing a phosphate buffer and NaCl was used to elute the bound α-amylase. By consecutive adsorption/desorption steps, up to 81% of the α-amylase activity could be recovered. Regarding the reutilization of the affinity adsorbents, α-amylase could be adsorbed and desorbed six times consecutively without a significant loss of α-amylase activity.  相似文献   

18.
Lee YC  Chang SP 《Bioresource technology》2011,102(9):5297-5304
The aim of this research was to develop a low cost adsorbent for wastewater treatment. The prime objective of this study was to search for suitable freshwater filamentous algae that have a high heavy metal ion removal capability. This study evaluated the biosorption capacity from aqueous solutions of the green algae species, Spirogyra and Cladophora, for lead (Pb(II)) and copper (Cu(II)). In comparing the analysis of the Langmuir and Freundlich isotherm models, the adsorption of Pb(II) and Cu(II) by these two types of biosorbents showed a better fit with the Langmuir isotherm model. In the adsorption of heavy metal ions by these two types of biosorbents, chemical and physical adsorption of particle surfaces was perhaps more significant than diffusion and adsorption between particles. Continuous adsorption-desorption experiments discovered that both types of biomass were excellent biosorbents with potential for further development.  相似文献   

19.
Suresh Gupta  B.V. Babu   《Bioresource technology》2009,100(23):5633-5640
Continuous adsorption experiments were performed in a fixed-bed adsorption column to evaluate the performance of low-cost adsorbent (sawdust) developed for the removal of Cr(VI) from aqueous solutions. The effects of influencing parameters such as flow rate, mass of adsorbent, initial Cr(VI) concentration were studied and the corresponding breakthrough curves were obtained. The fixed-bed adsorption process parameters such as breakthrough time, total percentage removal of Cr(VI), adsorption exhaustion rate and fraction of unused bed-length were obtained. A mathematical model for fixed-bed adsorption column was proposed by incorporating the effect of velocity variation along the bed-length in the existing model. Pore and solid diffusion models were used to describe the intra-particle mechanism for Cr(VI) adsorption. The proposed mathematical model was validated with the literature data and the experimental data obtained in the present study and the model was found to be good for explaining the behavior of breakthrough curves.  相似文献   

20.
Heavy metals can be adsorbed by living or non-living biomass. Submerged aquatic plants can be used for the removal of heavy metals. In this paper, lead, zinc, and copper adsorption properties of Ceratophyllum demersum (Coontail or hornwort) were investigated and results were compared with other aquatic submerged plants. Data obtained from the initial adsorption studies indicated that C. demersum was capable of removing lead, zinc, and copper from solution. The metal biosorption was fast and equilibrium was attained within 20 min. Data obtained from further batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (q(max)) onto C. demersum were 6.17 mg/g for Cu(II), 13.98 mg/g for Zn(II) and 44.8 mg/g for Pb(II). Kinetics of adsorption of zinc, lead and copper were analysed and rate constants were derived for each metal. It was found that the overall adsorption process was best described by pseudo second-order kinetics. The results showed that this submerged aquatic plant C. demersum can be successfully used for heavy metal removal under dilute metal concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号