首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.

Soil samples were collected from 7 sites in the up-, mid-and down-reach along and nearby the wastewater irrigation channel, western Shenyang of China. The concentrations of selected pollutants (mineral oil, PAHs - polycycle aromatic hydrocarbons and Cd) were determined by UV spectrometer, HPLC and AAS (atomic adsorption spectrometer) spectrometer, respectively. Toxicity effects of soils were evaluated by seedling emergence test with root length of wheat as the end-point and by earthworms test with the mortality rate and inhibition rates of body weight as endpoints. Results showed accumulation of pollutants for most soils with concentration of 200.2 mg.kg−1∼1600 mg.kg−1 for mineral oil, 0.33 mg.kg−1∼1.81 mg.kg−1 for Cd and 900.16 mg.kg−1 ∼ 2737.91 mg.kg−1 for PAHs. The inhibition rates of root elongation were from −20% up to 40 %, and mortality rates of earthworms ranged from 0%∼40% from the exposure period of two weeks to eight weeks by sampling interval of two weeks, the inhibition rates of earthworm growth were from −19.36% to 34.53%, showing effects of stimulation at 2 weeks to an increasing effects of inhibition at 4, 6 and 8 weeks, respectively. Mortality rates correlated with the loss of body weight of earthworms.

This study indicated the potential risk of pollutants of environmental low content in soil by the determination of selected chemicals combined with toxicity indexes.

  相似文献   

2.
Soil samples were collected from 7 sites in the up-, mid-and down-reach along and nearby the wastewater irrigation channel, western Shenyang of China. The concentrations of selected pollutants (mineral oil, PAHs - polycycle aromatic hydrocarbons and Cd) were determined by UV spectrometer, HPLC and AAS (atomic adsorption spectrometer) spectrometer, respectively. Toxicity effects of soils were evaluated by seedling emergence test with root length of wheat as the end-point and by earthworms test with the mortality rate and inhibition rates of body weight as endpoints. Results showed accumulation of pollutants for most soils with concentration of 200.2 mg.kg?1~1600 mg.kg?1 for mineral oil, 0.33 mg.kg?1~1.81 mg.kg?1 for Cd and 900.16 mg.kg?1 ~ 2737.91 mg.kg?1 for PAHs. The inhibition rates of root elongation were from ?20% up to 40 %, and mortality rates of earthworms ranged from 0%~40% from the exposure period of two weeks to eight weeks by sampling interval of two weeks, the inhibition rates of earthworm growth were from ?19.36% to 34.53%, showing effects of stimulation at 2 weeks to an increasing effects of inhibition at 4, 6 and 8 weeks, respectively. Mortality rates correlated with the loss of body weight of earthworms.This study indicated the potential risk of pollutants of environmental low content in soil by the determination of selected chemicals combined with toxicity indexes.  相似文献   

3.
An ex situ, field-scale, prepared bed land treatment unit (LTU) was used to bio-remediate soils containing petroleum hydrocarbons. Two soils were treated in side-by-side units to compare performance: (1) a clayey silt containing crude oil hydrocarbons from releases 30 to 40 years ago and (2) a silty sand containing diesel fuel hydrocarbons from a leak about three years prior to the bioremediation. The effectiveness of the bioremediation in the LTU was evaluated over a period of 18 months. The results indicated that: (1) prepared bed bioremediation reduced the hydrocarbon concentration, mobility, and relative toxicity in the soil with the diesel fuel, and (2) chemical bioavailability appeared to limit bioremediation of the soil containing the crude oil hydrocarbons. Although the soils containing the crude oil hydrocarbons contained an average of 10,000?mg TPH/kg dry soil, these soils had limited hydrocarbon availability, nontoxic conditions, and low potential for chemical migration. For the soils containing the diesel fuel, active prepared bed bioremediation of about 15 weeks was adequate to reach an environmentally acceptable endpoint. At that time, there was little further TPH loss, no MicrotoxTM toxicity, and limited hydrocarbon mobility.  相似文献   

4.
This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg?1) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg?1) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21–72.84%, while that of the corresponding controls was only 25.85–34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.  相似文献   

5.
This field study investigated the colonization process of soil contaminated with different petroleum products (petrol, diesel fuel, spent engine oil; dose: 6000 mg of fuel·kg?1 dry mass [d.m.] of soil) by epigeic and edaphic invertebrates during the progress of natural bioremediation and bioremediation enhanced using selected microorganisms (ZB-01 biopreparation). Epigeic fauna was captured using pitfall traps. Occurrence of edaphic fauna in soil samples as well as total petroleum hydrocarbon contents (TPH) were also investigated. Results showed that inoculation with ZB-01 biocenosis allowed the degradation of petroleum derivatives in the soil contaminated with diesel fuel and engine oil, with 82.3% and 75.4% efficiency, respectively. Applying bioremediation to all contaminated soils accelerated the process of recolonization by edaphic invertebrates. However, the 28-month period was too short to observe full population recovery in soils contaminated with diesel fuel and engine oil. Microbe-enhanced bioremediation accelerated recolonization by epigeic invertebrates on soil contaminated with diesel fuel, whereas it exerted inhibitory effect on recolonization of soil contaminated with engine oil (especially by Collembola). The observed discrepancies in the rates of recolonization for soils contaminated with petrol and diesel fuel that were still noted at the stage of no longer different TPH levels justify the idea to include the survey of edaphic faunal density as one of the parameters in the ecological risk assessment of various bioremediation techniques.  相似文献   

6.
A diesel-degrading bacterium (strain IU5) isolated from oil-contaminated soil was characterized in this study. Fatty acid and 16s rDNA sequence analysis identified IU5 as a strain of Pseudomonas aeruginosa, and growth curve experiments identified the bacterium’s optimum conditions as pH 7 and 30 °C. P. aeruginosa IU5 degraded up to 60 of applied diesel (8500 mg/kg) over 13 days in a soil-slurry phase. In addition, this strain was able to grow on many other petroleum hydrocarbons as sole carbon sources, including crude oil, gasoline, benzene, toluene, xylene, and even PAHs such as naphthalene, phenanthrene and pyrene. Therefore, P. aeruginosa IU5 may be useful for bioremediation of soils and groundwater contaminated with a variety of hydrocarbons.  相似文献   

7.
《农业工程》2021,41(5):416-423
The use of microorganisms for remediation and restoration of hydrocarbons contaminated soils is an effective and economic solution. The current study aims to find out efficient telluric filamentous fungi to degrade petroleum hydrocarbons pollutants. Six fungal strains were isolated from used engine (UE) oil contaminated soil. Fungi were screened for their ability to degrade crude oil, diesel and UE oil using 2.6-dichlorophenol indophenol (DCPIP). Two isolates were selected, identified and registered at NCBI as Aspergillus ustus HM3.aaa and Purpureocillium lilacinum HM4.aaa. Fungi were tested for their tolerance to different concentration of petroleum oils using radial growth diameter assay. Hydrocarbons removal percentage was evaluated gravimetrically. The degradation kinetic of crude oil was studied at a time interval of 10 days. A.ustus was the most tolerant fungi to high concentration of petroleum oils in solid medium. Quantitative analysis showed that crude oil was the most degraded oil by both isolate; P. lilacinium and A. ustus removed 44.55% and 30.43% of crude oil, respectively. The two fungi were able to degrade, respectively, 27.66 and 21.27% of diesel and 14.39 and 16.00% of UE oil. As compared to the controls, these fungi accumulated high biomass in liquid medium with all petroleum oils. Likewise, crude oil removal rate constant (K) and half-lives (t1/2) were 0.02 day−1, 34.66 day and 0.015 day−1, 46.21 day for P. lilacinium and A. ustus, respectively. The selected fungi appear interesting for petroleum oils biodegradation and their application for soil bioremediation require scale-up studies.  相似文献   

8.
Abstract

Our objective in this study was to compare the growth of zinnia, Italian ryegrass, and alfalfa, and their remediation effects in oil-contaminated soils. The soils were prepared by mixing 2, 4, or 8% diesel oil by weight with soil. The plant height and dry weights of shoots and roots were highest for zinnia in the 2 and 4% oil treatments, and highest for Italian ryegrass in the 8% oil treatment. The reduction ratios in soil total petroleum hydrocarbons concentration (TPH) for 3 plants were lower in the 4 and 8% oil treatments than those in the 2% treatment. The reduction ratios for Italian ryegrass and zinnia contaminated with 2, 4, and 8% diesel oil treatments were significantly higher than those for alfalfa and the non-cultivation treatment at 45?days after sowing, and there were no significant differences in reduction ratios between Italian ryegrass and zinnia. The reduction ratio of soil TPH concentration brought about by zinnia was also comparable to that of Italian ryegrass. Therefore, we conclude that zinnia shows growth and remediation effects that are equivalent to those of Italian ryegrass, in soils contaminated with less than 8% oil.  相似文献   

9.
Bacteria possessing high capacity to degrade gasoline, kerosene, diesel oil, and lubricating oil were screened from several areas of Hokkaido, Japan. Among isolates, two strains, WatG and HokM, which were identified as new strains of Pseudomonas aeruginosa and Serratia marcescens species, respectively, showed relatively high capacity and wide spectrum to degrade the hydrocarbons in gasoline, kerosene, diesel, and lubricating oil. About 90-95% of excess amount of total diesel oil and kerosene added to mineral salts media as a sole carbon source could be degraded by WatG within 2 and 3 weeks, respectively. The same amount of lubricating oil was 60% degraded within 2 weeks. Strain HokM was more capable than WatG in degrading aromatic compounds in gasoline. This strain could also degrade kerosene, diesel, and lubricating oil with a capacity of 50-60%. Thus, these two isolates have potential to be useful for bioremediation of sites highly contaminated with petroleum hydrocarbons.  相似文献   

10.
Soil samples were collected from 7 sites in the up-, mid- and down-reach along and nearby the wastewater irrigation channel, western Shenyang of China. The concentrations of selected pollutants (mineral oil, PAHs - polycycle aromatic hydrocarbons and Cd) were determined by UV spectrometer, HPLC and AAS (atomic adsorption spectrometer) spectrometer, respectively. Toxicity effects of soils were evaluated by seedling emergence test with root length of wheat as the end-point and by earthworms test with the mortality rate and inhibition rates of body weight as endpoints. Results showed accumulation of pollutants for most soils with concentration of 200.2 mg.kg-1 ~1600 mg.kg-1 for mineral oil, 0.33 mg.kg-1~1.81 mg.kg-1 for Cd and 900.16 mg.kg-1~ 2737.91 mg.kg-1 for PAHs. The inhibition rates of root elongation were from -20% up to 40 %, and mortality rates of earthworms ranged from 0%~40% from the exposure period of two weeks to eight weeks by sampling interval of two weeks, the inhibition rates of earthworm growth were from -19.36% to 34.53%, showing effects of stimulation at 2 weeks to an increasing effects of inhibition at 4, 6 and 8 weeks, respectively. Mortality rates correlated with the loss of body weight of earthworms.This study indicated the potential risk of pollutants of environmental low content in soil by the determination of selected chemicals combined with toxicity indexes.  相似文献   

11.
新疆石油污染土壤中微生物多环芳烃(polycyclic aromatic hydrocarbons,PAHs)降解功能基因研究甚少,且环境因子和功能基因之间相关性仍不清楚。【目的】揭示新疆石油污染砂质土壤自然衰减过程中多环芳烃降解关键基因结构和变化规律。【方法】以新疆准东油田为研究区,分析同一采油区不同石油污染年限土壤理化因子和多环芳烃含量变化,采用扩增子测序研究石油自然衰减过程中多环芳烃降解酶基因结构变化规律,利用Mental检验探讨其环境驱动因子。【结果】石油污染时间1年和3年的土壤中有多项理化指标与背景土存在显著性差异,而污染5年土壤与背景土之间仅2项指标具有显著性差异,随石油自然衰减逐渐恢复至正常。石油污染1年的土壤中16种多环芳烃除苊烯和?以外,其余14种多环芳烃均高于石油污染3年和5年土壤,多环芳烃总量和含油率污染1年土壤均显著高于污染3年和5年的土壤,多环芳烃会在污染后短时间内迅速被降解。扩增子测序结果显示,萘双加氧酶基因分类操作单元(operational taxonomic units,OTUs)序列随污染年限延长逐渐增多;芳环羟化双加氧酶基因OTUs序列BLAST(...  相似文献   

12.
Earthworm survival in oil contaminated soil   总被引:4,自引:0,他引:4  
Earthworms are an important component of the soil biota and their response to oil pollution needs to be better understood. Laboratory investigations were undertaken to determine the concentrations of crude oil in soil that leads to death of Lumbricus terrestris and Eisenia fetida and to determine the propensity of L. terrestris to move away from contaminated soil. Clemville sandy clay loam was amended to contain maximum oil contents of 1.5 – 2.5% depending on the particular experiment. Additionally, the ability of L. terrestristo survive in bioremediated oil-contaminated soil was evaluated. An oil content of 0.5% was not harmful to survival of earthworms for 7 d but an oil concentration of 1.5% reduced survival to less than 40%. Bioremediated soil containing 1.2% oil did not reduce survival of L. terrestrisduring 10 d. Survival of L. terrestrisin unweathered oil was improved when free movement between contaminated and uncontaminated soil was possible. Casts of earthworms exposed to oil-containing soil contained 0.2% total petroleum hydrocarbons. An allowable regulatory level of 1% oil contamination in soil may not allow for survival of earthworms.  相似文献   

13.
In less developed countries, the prevalence of soil contaminated with used lubricating oil is high and the situation worsens with the economic advancement. The contamination has been shown to adversely affect the environment and human health. To mitigate, bioremediation could be adopted to tackle the problem of hydrocarbon-contaminated soil. Thus, this experimental research carried out the bioremediation using chicken manure in soils contaminated with 5%, 10% and 20% w/w used lubricating oil for a 42-day composting period. To compare, this research also experimented with the 5%, 10% and 20% oil-contaminated soils untreated with chicken manure. The results showed that the highest total petroleum hydrocarbons (TPHs) reduction efficiency of >60% was achieved in the 5% oil-contaminated compost remediated with chicken manure. The highest biodegradation rate of lubricating oil of 0.023–0.0025 day?1 as measured by the first-order kinetics could also be achieved under the 5% oil contamination condition with the application of chicken manure. The findings highlight the prospect of chicken manure as a proper nutrient for enhanced remediation of hydrocarbon-contaminated soils, particularly of low contamination concentrations.  相似文献   

14.
In this study, toxicity equivalents and health risks, based on concentration of 16 priority polycyclic aromatic hydrocarbons (PAHs) in urban residential soils were estimated for the human population in Gwalior, India. Benzo(a)pyrene total potency equivalents (BaP TPE) were estimated for assessment of human health risk from direct contact with PAH-contaminated soil. Potential risk to contaminated groundwater from leaching of carcinogenic PAHs was assessed by estimating the index of additive cancer risk (IACR). On the basis of lifetime average daily intake of 16 PAHs through ingestion of PAH-contaminated soils, lifetime cancer risk to human adults and children was estimated. The concentration of probable human carcinogenic PAHs in soils accounted for 38% of ∑16PAHs. BaP TPE and index of additive cancer risk (IACR) were lower than guideline values of 0.6 mg kg?1 and <1, respectively. Estimated lifetime average daily intakes of PAHs via soil ingestion were lower than recommended dose. However, the ILCR for human adults was within acceptable limits recommended by regulatory agencies, but may need action for children in Gwalior, India.  相似文献   

15.
基于不同开采年代新油井(2011—)和老油井(1966—2003年)周边土壤的调查取样,研究了采油区土壤石油污染状况,利用PCR-DGGE和克隆测序技术,探讨了新、老油井周边土壤微生物的群落结构.结果表明:油井周边土壤均受到不同程度的石油污染,其石油烃含量大多高于土壤石油污染临界值(500 mg·kg-1),且老油井周边土壤污染水平更高.污染土壤石油烃含量与土壤有机碳、全氮和速效钾含量呈显著正相关.老油井周边土壤微生物群落多样性指数随污染水平的增大而减小,新油井则呈相反的趋势.DGGE图谱优势条带测序结果表明,油井周边土壤均存在明显的优势菌,大多为石油烃相关菌和烃类降解菌,如微杆菌属、链霉菌属、迪茨氏菌属、黄杆菌属及α、γ变形菌等.
  相似文献   

16.
The environmental hazard was studied of eight soil and solid waste samples originating from a region of Estonia heavily polluted by the oil shale industry. The samples were contaminated mainly with oil products (up to 7231mg/kg) and polycyclic aromatic hydrocarbons (PAHs; up to 434mg/kg). Concentrations of heavy metals and water-extractable phenols were low. The toxicities of the aqueous extracts of solid-phase samples were evaluated by using a battery of Toxkit tests (involving crustaceans, protozoa, rotifers and algae). Waste rock and fresh semi-coke were classified as of "high acute toxic hazard", whereas aged semi-coke and most of the polluted soils were classified as of "acute toxic hazard". Analysis of the soil slurries by using the photobacterial solid-phase flash assay showed the presence of particle-bound toxicity in most samples. In the case of four samples out of the eight, chemical and toxicological evaluations both showed that the levels of PAHs, oil products or both exceeded their respective permitted limit values for the living zone (20mg PAHs/kg and 500mg oil products/kg); the toxicity tests showed a toxic hazard. However, in the case of three samples, the chemical and toxicological hazard predictions differed markedly: polluted soil from the Erra River bank contained 2334mg oil/kg, but did not show any water-extractable toxicity. In contrast, spent rock and aged semi-coke that contained none of the pollutants in hazardous concentrations, showed adverse effects in toxicity tests. The environmental hazard of solid waste deposits from the oil shale industry needs further assessment.  相似文献   

17.
In contaminated soils, efficiency of natural attenuation or engineered bioremediation largely depends on biodegradation capacities of the local microflorae. In the present study, the biodegradation capacities of various microflorae towards diesel oil were determined in laboratory conditions. Microflorae were collected from 9 contaminated and 10 uncontaminated soil samples and were compared to urban wastewater activated sludge. The recalcitrance of hydrocarbons in tests was characterised using both gas chromatography (GC) and comprehensive two-dimensional gas chromatography (GC×GC). The microflorae from contaminated soils were found to exhibit higher degradation capacities than those from uncontaminated soil and activated sludge. In cultures inoculated by contaminated-soil microflorae, 80% of diesel oil on an average was consumed over 4-week incubation compared to only 64% in uncontaminated soil and 60% in activated sludge cultures. As shown by GC, n-alkanes of diesel oil were totally utilised by each microflora but differentiated degradation extents were observed for cyclic and branched hydrocarbons. The enhanced degradation capacities of impacted-soil microflorae resulted probably from an adaptation to the hydrocarbon contaminants but a similar adaptation was noted in uncontaminated soils when conifer trees might have released natural hydrocarbons. GC×GC showed that a contaminated-soil microflora removed all aromatics and all branched alkanes containing less than C15. The most recalcitrant compounds were the branched and cyclic alkanes with 15–23 atoms of carbon.  相似文献   

18.
Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.  相似文献   

19.
Phytoremediation is the use of selected plants to decontaminate polluted environments. Arbuscular mycorrhizal fungi (AMF) may potentially be useful for phytoremediation, but it is not known how petroleum hydrocarbons influence AMF spore germination and hyphal growth. To address this question, germination of spores and germ tube growth of Glomus intraradices Schenck and Smith and Glomus aggregatum Schenck and Smith were assessed in soil contaminated with up to 3% (w/v) of F2 diesel oil or HAGO reference oil. Hyphal growth, colonization and progeny spore production were assessed in vitro using transformed root cultures of Daucus carota and G. intraradices spores in a F2 diesel contaminated medium. In addition, extraradical hyphal growth of G. intraradices colonizing Daucus carota in the presence of F2 diesel was studied. Neither F2 diesel nor HAGO reference oil affected spore germination or germ tube growth in soil. However, in the presence of plant roots, germ tube growth of G. intraradices was reduced and delayed in the presence of F2 diesel and root colonization was not detected. Hyphal growth of pre-colonized carrot roots by G. intraradices was reduced and delayed in F2 contaminated medium compared to controls. F2 diesel did not inhibit spore germination of these AMF species but did reduce colonization, germ tube and hyphal growth. These results suggest that AMF inoculum can be established in petroleum-contaminated sites. However, it may prove beneficial to plant pre-colonized plants to increase the probability of sufficient AMF colonization and growth. The likely mechanism(s) of petroleum toxicity in this plant-microbe system was discussed.  相似文献   

20.
The search for cheaper and environmentally friendly options of enhancing petroleum hydrocarbon degradation has continued to elicit research interest. One of such options is the use of animal manure as biostimulating agents. A combination of treatments consisting of the application of poultry manure, piggery manure, goat manure, and chemical fertilizer was evaluated in situ during a period of 4 weeks of remediation. Each treatment contained petroleum hydrocarbon mixture (kerosene, diesel oil, and gasoline mixtures) (10% w/w) in soil as a sole source of carbon and energy. After 4 weeks of remediation, the results showed that poultry manure, piggery manure, goat manure, and NPK (nitrogen, phosphorous, and potash [potassium]) fertilizer exhibited 73%, 63%, 50%, and 39% total petroleum hydrocarbon degradation, respectively. Thus, all the biostimulating treatment strategies showed the ability to enhance petroleum hydrocarbon microbial degradation. However, poultry manure, piggery manure, and goat manure treatments showed greater petroleum hydrocarbon reductions than NPK fertilizer treatment. A first-order kinetic equation was fitted to the biodegradation data and the specific degradation rate constant (k) values obtained showed that the order of effectiveness of these biostimulating strategies in the cleanup of soil contaminated with petroleum hydrocarbon mixtures (mixture of kerosene, diesel oil, and gasoline) is NPK fertilizer < goat manure < piggery manure < poultry manure. Therefore, this present work has indicated that the application of poultry manure, piggery manure, goat manure, and chemical fertilizer could enhance petroleum hydrocarbon degradation with poultry manure, showing a greater effectiveness and thus could be one of the severally sought environmentally friendly ways of remediating natural ecosystem contaminated with crude oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号