首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archaea represent a significant portion of biomass in the marine sediments and may play an important role in global carbon cycle. However, the identity and composition of deep sea sediment Archaea are unclear. Here, we used the archaeal 16S rRNA gene primers to determine the diversity and community structure of Archaea from shallow water (<100 m) and deep water (>1500 m) sediments in the South China Sea. Phylogenetically the archaeal community is separated between the shallow- and deep sea sediments, with the former being dominated by the Thaumarchaeota and the latter by the Marine Benthic Group B, E and the South African GoldMine Euryarchaeotal Group as well as Thaumarchaeota. Sand content showed significant correlation with Thaumarchaeota, suggesting that the porous media may create an oxic environment that allowed these aerobic organisms to thrive in the surface sediments. The carbon isotope composition of total organic carbon was significantly correlated to the distribution of archaeal groups, suggesting that Archaea overall may be constrained by the availability or sources of organic carbon in the sediments of the South China Sea.  相似文献   

2.
The objective of this study was to examine the presence and diversity of Archaea within mineral and ornithogenic soils from 12 locations across the Ross Sea region. Archaea were not abundant but DNA sufficient for producing 16S rRNA gene clone libraries was extracted from 18 of 51 soil samples, from four locations. A total of 1452 clones were analysed by restriction fragment length polymorphism and assigned to 43 operational taxonomic units from which representatives were sequenced. Archaea were primarily restricted to coastal mineral soils which showed a predominance of Crenarchaeota belonging to group 1.1b (> 99% of clones). These clones were assigned to six clusters (A through F), based on shared identity to sequences in the GenBank database. Ordination indicated that soil chemistry and water content determined archaeal community structure. This is the first comprehensive study of the archaeal community in Antarctic soils and as such provides a reference point for further investigation of microbial function in this environment.  相似文献   

3.
The abundance, diversity and composition of bacterial and archaeal communities in a freshwater iron-rich microbial mat were investigated using culture-dependent and culture-independent methods. The sampling site is a mixing zone where ferrous-iron-rich fluids encounter oxygen-rich environments. Quantitative PCR analysis shows that Bacteria dominated the mat community (>99% of the total cell numbers). Phylotypes related to iron-oxidizers in Gallionellaceae, methano/methylotrophs in Methylophilaceae and Methylococcaceae, sulfide-oxidizers in Sulfuricurvum and an uncultured clone group, called Terrestrial group I or the 1068 group, in the Epsilonproteobacteria were detected in the clone library from the original sample and/or the enrichment cultures. This result suggests that these members may play a role in Fe, S and C cycling in the mixing zone. Although Archaea were minor constituents numerically, phylogenetic analysis indicates that unique and diverse yet-uncultivated Archaea are present in the iron-rich mat. The phylotypes of these yet-uncultivated Archaea belong to environmental clone groups that have been recovered from other mixing zones in terrestrial and marine environments, and some of our phylotypes have significantly low similarity (80% or lower) with the archaeal clones reported previously. Our results provide further insights into the bacterial and archaeal communities in a microaerobic iron-rich freshwater environment in mixing zones.  相似文献   

4.
The Bacteria and Archaea from the meromictic Lake Pavin were analyzed in samples collected along a vertical profile in the anoxic monimolimnion and were compared to those in samples from the oxic mixolimnion. Nine targeted 16S rRNA oligonucleotide probes were used to assess the distribution of Bacteria and Archaea and to investigate the in situ occurrence of sulfate-reducing bacteria and methane-producing Archaea involved in the terminal steps of the anaerobic degradation of organic material. The diversity of the complex microbial communities was assessed from the 16S rRNA polymorphisms present in terminal restriction fragment (TRF) depth patterns. The densities of the microbial community increased in the anoxic layer, and Archaea detected with probe ARCH915 represented the largest microbial group in the water column, with a mean Archaea/Eubacteria ratio of 1.5. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed an elevated archaeal and bacterial phylotype richness in anoxic bottom-water samples. The structure of the Archaea community remained rather homogeneous, while TRFLP patterns for the eubacterial community revealed a heterogeneous distribution of eubacterial TRFs.  相似文献   

5.
A first study was made on the microbial community composition of the Indonesian crater lake Kawah Ijen (pH < 0.3) and the Banyupahit–Banyuputih river (pH 0.4–3.5) originating from it. Culture-independent, rRNA gene-based denaturing gradient gel electrophoresis was used to profile microbial communities in this natural and ancient, extremely acidic environment. Similarity in community profiles of the different sampling locations was low, indicating heterogeneity in community composition. Archaea were present at all sampling locations; archaeal diversity was low at the most acidic locations and increased at pH >2.6. Bacteria were not detected in the water column of the crater lake, but were found at all locations along the acidic river. Bacterial diversity increased with increasing pH. Eukarya were only present at pH >2.6. Retrieved rRNA gene sequences of Bacteria and Archaea were not closely related to known acidophilic species. It is concluded that tolerance to extreme acidity in this system is developed most extensively among Archaea. The acidity gradient of the Banyupahit–Banyuputih river has a clear effect on microbial community composition and biodiversity.  相似文献   

6.
Anaerobic co-digestion of food waste and biosolids was carried out in sequential batch and single-stage batch systems in four treatments. Methane yield, which was used as a functional process parameter, differed between treatments, with the single-stage batch system generating lower volumes than the sequential batch systems. Volatile fatty acid (VFA) concentrations and pH in the leachate also differed between treatments. VFA concentrations were highest and methane generation yields lowest in the single-stage batch system in comparison to the sequential batch systems. The anaerobic microbial community structure of the domains Archaea and Bacteria, determined by denaturing gradient gel electrophoresis, differed between treatments and was correlated to a number of environmental parameters such as pH, VFA concentration and methane generation rate. Methane generation rate was significantly correlated to the community structure of Bacteria but not Archaea. This indicated that the substrates that are produced by acetogens (Bacteria) are important for the growth and community structure of the methanogens (Archaea). Community structure of Archaea changed over time, but this had no observable effect on functional ability based on methane yields. Microbial diversity (H′) was shown to be not important in developing a functionally successful anaerobic microbial community.  相似文献   

7.
Archaea assemblages from the Arctic Ocean and Antarctic waters were compared by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes amplified using the Archaea-specific primers 344f and 517r. Inspection of the DGGE fingerprints of 33 samples from the Arctic Ocean (from SCICEX submarine cruises in 1995, 1996, and 1997) and 7 Antarctic samples from Gerlache Strait and Dallman Bay revealed that the richness of Archaea assemblages was greater in samples from deep water than in those from the upper water column in both polar oceans. DGGE banding patterns suggested that most of the Archaea ribotypes were common to both the Arctic Ocean and the Antarctic Ocean. However, some of the Euryarchaeota ribotypes were unique to each system. Cluster analysis of DGGE fingerprints revealed no seasonal variation but supported depth-related differences in the composition of the Arctic Ocean Archaea assemblage. The phylogenetic composition of the Archaea assemblage was determined by cloning and then sequencing amplicons obtained from the Archaea-specific primers 21f and 958r. Sequences of 198 clones from nine samples covering three seasons and all depths grouped with marine group I Crenarchaeota (111 clones), marine group II Euryarchaeota (86 clones), and group IV Euryarchaeota (1 clone). A sequence obtained only from a DGGE band was similar to those of the marine group III Euryarchaeota.  相似文献   

8.
Du J  Xiao K  Huang Y  Li H  Tan H  Cao L  Lu Y  Zhou S 《Antonie van Leeuwenhoek》2011,100(3):317-331
This study was conducted to characterize the diversity of microbial communities in marine sediments of the South China Sea by means of 16S rRNA gene clone libraries. The results revealed that the sediment samples collected in summer harboured a more diverse microbial community than that collected in winter, Deltaproteobacteria dominated 16S rRNA gene clone libraries from both seasons, followed by Gammaproteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, Firmicutes. Archaea phylotypes were also found. The majority of clone sequences shared greatest similarity to uncultured organisms, mainly from hydrothermal sediments and cold seep sediments. In addition, the sedimentary microbial communities in the coastal sea appears to be much more diverse than that of the open sea. A spatial pattern in the sediment samples was observed that the sediment samples collected from the coastal sea and the open sea clustered separately, a novel microbial community dominated the open sea. The data indicate that changes in environmental conditions are accompanied by significant variations in diversity of microbial communities at the South China Sea.  相似文献   

9.

Background

Bacterial community composition in the marine environment differs from one geographical location to another. Reports that delineate the bacterial diversity of different marine samples from geographically similar location are limited. The present study aims to understand whether the bacterial community compositions from different marine samples harbour similar bacterial diversity since these are geographically related to each other.

Methods and Principal Findings

In the present study, 16S rRNA deep sequencing analysis targeting V3 region was performed using Illumina bar coded sequencing. A total of 22.44 million paired end reads were obtained from the metagenomic DNA of Marine sediment, Rhizosphere sediment, Seawater and the epibacterial DNA of Seaweed and Seagrass. Diversity index analysis revealed that Marine sediment has the highest bacterial diversity and the least bacterial diversity was observed in Rhizosphere sediment. Proteobacteria, Actinobacteria and Bacteroidetes were the dominant taxa present in all the marine samples. Nearly 62–71% of rare species were identified in all the samples and most of these rare species were unique to a particular sample. Further taxonomic assignment at the phylum and genus level revealed that the bacterial community compositions differ among the samples.

Conclusion

This is the first report that supports the fact that, bacterial community composition is specific for specific samples irrespective of its similar geographical location. Existence of specific bacterial community for each sample may drive overall difference in bacterial structural composition of each sample. Further studies like whole metagenomic sequencing will throw more insights to the key stone players and its interconnecting metabolic pathways. In addition, this is one of the very few reports that depicts the unexplored bacterial diversity of marine samples (Marine sediment, Rhizosphere sediment, Seawater) and the host associated marine samples (Seaweed and Seagrass) at higher depths from uncharacterised coastal region of Palk Bay, India using next generation sequencing technology.  相似文献   

10.
The South China Sea, which is one of the largest marginal seas in the world, is predicted to have suitable accumulation conditions and exporting prospects for natural gas hydrate. The aim of this study was to explore the bacterial community composition of deep-sea sediments from such an ecosystem. DNA was extracted by five different methods and used as templates for PCR amplification of the V3 regions of the 16S rRNA gene. Denaturing gradient gel electrophoresis (DGGE) was used to separate the amplified products and analyse the 16S rRNA gene diversity of sediment samples. The results of DGGE indicated that the bacterial community composition is influenced by DNA extraction methods. Sequencing dominant bands demonstrated that the major phylogenetic groups identified by DGGE belong to Proteobacteria, Bacteroidetes, gram-positive bacteria and Archaea. Integrating different DNA extraction procedures are needed to analyse the actual bacterial diversity from environment when the amplification of 16S rRNA gene and construction of representative clone library were adopted.  相似文献   

11.
Abstract

Microbial community structure reflects the surrounding natural environment and changes to that environment. Although the subsurface at 5–100?m depth is important for human activities and there are potential risks of environmental pollution in this region, there have been only a few reports of subsurface microbial community structures in terrestrial areas. We investigated the diversity and community compositions of Bacteria and Archaea in boring cores collected from various depths at three different sites in the southern Kanto Plain, Japan. The results of 16S rRNA gene amplicon sequencing using MiSeq showed that the microbial community composition varied with the geological unit. Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) were dominant members within sediments accumulated during the Pleistocene in the Musashino Upland. In contrast, Acidobacteria and Chloroflexi characteristically appeared in the Holocene layers of the Arakawa Lowland. These data suggest that the subsurface microbial composition is controlled by the geological features of the sediments.  相似文献   

12.
A newly reported 16S rRNA gene-based PCR primer set was successfully applied to detect anammox bacteria from four ecosystem samples, including sediments from marine, reservoir, mangrove wetland, and wastewater treatment plant sludge. This primer set showed ability to amplify a much wider coverage of all reported anammox bacterial genera. Based on the phylogenetic analyses of 16S rRNA gene of anammox bacteria, two new clusters were obtained, one closely related to Candidatus Scalindua, and the other in a previously reported novel genus related to Candidatus Brocadia. In the Scalindua cluster, four new subclusters were also found in this study, mainly by sequences of the South China Sea sediments, presenting a higher diversity of Candidatus Scalindua in marine environment. Community structure analyses indicated that samples were grouped together based on ecosystems, showing a niche-specific distribution. Phylogenetic analyses of anammox bacteria in samples from the South China Sea also indicated distinguished community structure along the depth. Pearson correlation analysis showed that the amount of anammox bacteria in the detected samples was positively correlated with the nitrate concentration. According to Canonical Correspondence Analysis, pH, temperature, nitrite, and nitrate concentration strongly affected the diversity and distribution of anammox bacteria in South China Sea sediments. Results collectively indicated a promising application of this new primer set and higher anammox bacteria diversity in the marine environment.  相似文献   

13.
海洋浮游细菌在生物地球化学循环过程中具有不可替代的作用。为解析广西北部湾茅尾海夏冬季浮游细菌群落结构及其关键环境影响因子,于2017年6月(夏季)和2017年12月(冬季)在该海域设置7个站点,采集0.5m处表层海水样品,利用16S核糖体RNA (16S rRNA)基因高通量测序技术,分析茅尾海浮游细菌群落结构与多样性。结果表明:茅尾海海域浮游细菌隶属于11个门、36个纲、86个目、188个科和506个属;主要浮游细菌类群为变形菌门(Proteobacteria, 52.47%)、厚壁菌门(Firmicutes, 17.34%)、放线菌门(Actinobacteria, 16.39%)、拟杆菌门(Bacteroidetes, 7.54%)和蓝细菌门(Cyanobacteria, 5.38%),共占浮游细菌总丰度的99.12%。北部湾茅尾海夏季浮游细菌群落Chao 1指数和Richness指数均显著(P<0.05)高于冬季。主坐标分析(PCoA)和相似性分析(ANOSIM)结果表明,不同季节浮游细菌群落结构存在极显著差异(R=0.586,P<0.001)。在目分类水平上进行组...  相似文献   

14.
The presence of Archaea in the Great Barrier Reef marine sponge Rhopaloeides odorabile was investigated by 16S ribosomal RNA community analysis of total DNA extracted from the sponge tissue. The 16S rRNA gene sequences corresponding to group I crenarchaeotes and group II euryarchaeotes were recovered from R. odorabile tissue. The location of archaeal cells within the sponge tissue was investigated using fluorescently labeled oligonucleotide probes. The presence of Archaea was confirmed within all regions of the sponge tissue from R. odorabile, with a significantly higher number of archaeal cells located in the pinacoderm than the mesohyl region. This is the first report of euryarchaeaotes associated with marine sponges. Received April 16, 2001; accepted June 27, 2001  相似文献   

15.
Next-generation sequencing (NGS) opens up exciting possibilities for improving our knowledge of environmental microbial diversity, allowing rapid and cost-effective identification of both cultivated and uncultivated microorganisms. However, library preparation, sequencing, and analysis of the results can provide inaccurate representations of the studied community compositions. Therefore, all these steps need to be taken into account carefully. Here we evaluated the effects of DNA extraction methods, targeted 16S rRNA hypervariable regions, and sample origins on the diverse microbes detected by 454 pyrosequencing in marine cold seep and hydrothermal vent sediments. To assign the reads with enough taxonomic precision, we built a database with about 2,500 sequences from Archaea and Bacteria from deep-sea marine sediments, affiliated according to reference publications in the field. Thanks to statistical and diversity analyses as well as inference of operational taxonomic unit (OTU) networks, we show that (i) while DNA extraction methods do not seem to affect the results for some samples, they can lead to dramatic changes for others; and (ii) the choice of amplification and sequencing primers also considerably affects the microbial community detected in the samples. Thereby, very different proportions of pyrosequencing reads were obtained for some microbial lineages, such as the archaeal ANME-1, ANME-2c, and MBG-D and deltaproteobacterial subgroups. This work clearly indicates that the results from sequencing-based analyses, such as pyrosequencing, should be interpreted very carefully. Therefore, the combination of NGS with complementary approaches, such as fluorescence in situ hybridization (FISH)/catalyzed reporter deposition (CARD)-FISH or quantitative PCR (Q-PCR), would be desirable to gain a more comprehensive picture of environmental microbial communities.  相似文献   

16.
17.
The Lonar crater is an unusually well-preserved meteorite impact structure that is located in one of the largest volcanic provinces on Earth (i.e., the Deccan Traps in India). The diversity of endoliths in Lonar crater basalts or Deccan flood basalts is not known. Here, the phylogenetic diversity of endolithic Bacteria and Archaea inhabiting basalts retrieved from four discrete sampling sites on the Lonar crater walls and the lake-bed was assessed using culture-independent molecular methods. Taxonomic classification of 16S rRNA gene sequences from all four basalt samples revealed similarities as well as dissimilarities in the presence or absence of several prokaryotic taxa. Cluster analysis of Denaturing gradient gel electrophoresis fingerprints and UniFrac analysis of clone library sequences suggested substantial variations in bacterial and archaeal diversity between crater-wall and lake-bed sites. Although sequences affiliated to the bacterial phyla Actinobacteria, Acidobacteria and Chloroflexi were relatively more abundant in crater-wall basalts than in lake-bed basalts; the reverse was observed for sequences related to Proteobacteria, Firmicutes, Cyanobacteria and Bacteroidetes. Archaea in crater-wall and lake-bed basalt libraries were almost completely represented by Thaumarchaeota and Euryarchaeota, respectively. Diversity indices and richness estimates suggested the diversity of endolithic Bacteria to be higher than that of Archaea in the Lonar crater basalts. A substantial number of clone library sequences did not affiliate with extant Bacteria and Archaea. The detection of several putative lineages associated with C, N and S cycling suggests that the Lonar crater basalts are colonized by metabolically diverse prokaryotic communities involved in biogeochemical cycling of major elements.  相似文献   

18.
Steep vertical gradients of oxidants (O2 and NO3) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers, Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The suitablility of T-RFLP analysis for investigating communities of nirS-containing denitrifiers was established by the correspondence of dominant terminal restriction fragments (T-RFs) of nirS to computer-simulated T-RFs of nirS clones. These clones belonged to clusters II, III, and IV from the same cores and were analyzed in a previous study (G. Braker, J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje, Appl. Environ. Microbiol. 66:2096–2104, 2000). T-RFLP analysis of nirS and bacterial rDNA revealed a high level of functional and phylogenetic diversity, whereas the level of diversity of Archaea was lower. A comparison of T-RFLPs based on the presence or absence of T-RFs and correspondence analysis based on the frequencies and heights of T-RFs allowed us to group sediment samples according to the sampling location and thus clearly distinguish Puget Sound and the Washington margin populations. However, changes in community structure within sediment core sections during the transition from aerobic to anaerobic conditions were minor. Thus, within the top layers of marine sediments, redox gradients seem to result from the differential metabolic activities of populations of similar communities, probably through mixing by marine invertebrates rather than from the development of distinct communities.  相似文献   

19.
Grassland management influences soil archaeal communities, which appear to be dominated by nonthermophilic crenarchaeotes. To determine whether methanogenic Archaea associated with the Euryarchaeota lineage are also present in grassland soils, anaerobic microcosms containing both managed (improved) and natural (unimproved) grassland rhizosphere soils were incubated for 28 days to encourage the growth of anaerobic Archaea. The contribution of potential methanogenic organisms to the archaeal community was assessed by the molecular analysis of RNA extracted from soil, using primers targeting all Archaea and Euryarchaeota. Archaeal RT‐PCR products were obtained from all anaerobic microcosms. However, euryarchaeal RT‐PCR products (of putative methanogen origin) were obtained only from anaerobic microcosms of improved soil, their presence coinciding with detectable methane production. Sequence analysis of excised denaturing gradient gel electrophoresis (DGGE) bands revealed the presence of euryarchaeal organisms that could not be detected before anaerobic enrichment. These data indicate that nonmethanogenic Crenarchaeota dominate archaeal communities in grassland soil and suggest that management practices encourage euryarchaeal methanogenic activity.  相似文献   

20.
For the analysis of microbial community structure based on 16S rDNA sequence diversity, sensitive and robust PCR amplification of 16S rDNA is a critical step. To obtain accurate microbial composition data, PCR amplification must be free of bias; however, amplifying all 16S rDNA species with equal efficiency from a sample containing a large variety of microorganisms remains challenging. Here, we designed a universal primer based on the V3-V4 hypervariable region of prokaryotic 16S rDNA for the simultaneous detection of Bacteria and Archaea in fecal samples from crossbred pigs (Landrace×Large white×Duroc) using an Illumina MiSeq next-generation sequencer. In-silico analysis showed that the newly designed universal prokaryotic primers matched approximately 98.0% of Bacteria and 94.6% of Archaea rRNA gene sequences in the Ribosomal Database Project database. For each sequencing reaction performed with the prokaryotic universal primer, an average of 69,330 (±20,482) reads were obtained, of which archaeal rRNA genes comprised approximately 1.2% to 3.2% of all prokaryotic reads. In addition, the detection frequency of Bacteria belonging to the phylum Verrucomicrobia, including members of the classes Verrucomicrobiae and Opitutae, was higher in the NGS analysis using the prokaryotic universal primer than that performed with the bacterial universal primer. Importantly, this new prokaryotic universal primer set had markedly lower bias than that of most previously designed universal primers. Our findings demonstrate that the prokaryotic universal primer set designed in the present study will permit the simultaneous detection of Bacteria and Archaea, and will therefore allow for a more comprehensive understanding of microbial community structures in environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号