首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Estimating the biodegradation rate is essential when designing a bioremediation strategy for petroleum-contaminated sites, and when evaluating assessment guidelines. However, estimating the biodegradation rate is difficult as the rate constant varies from site to site due to changing site conditions, which include soil type, biological activity, and type of contaminant. Accordingly, bench-scale biodegradation studies were completed using respirometers to measure first-order biodegradation rate constants for gasoline in several soils over 30 days of incubation. A total of seven soils were tested at various gasoline concentrations with constant nutrient ratios and water content. No microbial inhibition was observed for the range of gasoline concentrations studied. Analysis showed that the statistically significant parameters were the initial population of petroleum-degrading microorganisms and the organic matter content. The developed empirical correlation is a simple tool that practioners can use to estimate the biodegradation rate without conducting lengthy and expensive experiments.  相似文献   

2.
Bioventing is a cutting edge, nondestructive treatment method that uses indigenous soil microorganisms in situ to remediate petroleum hydrocarbons in the unsaturated soil zone. Transferring the application of this technology to a field environment still has some uncertainties due to scale-up challenges. In order to identify the scale-up factor, a 80-kg soil reactor system was developed, consisting of a custom-made reactor, climate chamber, low-flow venting system, and an off-gas capture device. Sandy and clayey soils were tested with known concentrations of spiked synthetic gasoline. Various environmental conditions were monitored, which included moisture levels, pH, microbial levels, and nutrient and oxygen levels. Results show a second-stage degradation rate similar to the degradation rate obtained from research conducted with a 4-kg reactor, giving an average scale-up factor of 2.3 ± 0.4. The completed research shows that working with a 80-kg laboratory reactor is feasible, yet not always necessary for the development of scale-up factors. A complimentary study with aged soil contaminants was performed and yielded degradation rates that were significantly reduced.  相似文献   

3.
石油污染土壤的生物修复技术   总被引:48,自引:6,他引:48  
1 前 言在石油生产、贮运、炼制加工及使用过程中 ,由于事故 ,不正常操作及检修等原因 ,都会有石油烃类的溢出和排放。例如 ,油田开发过程中的井喷事故 ;输油管线和贮油罐的泄漏事故 ;油槽车和油轮的泄漏事故 ;油井清蜡和油田地面设备检修 ;炼油和石油化工生产装置检修等。石油烃类大量溢出 ,应当尽可能予以回收 ,但有的情况下回收很困难 ,即使尽力回收 ,仍会残留一部分 ,对环境 (土壤、地面和地下水 )造成污染。其进入土壤后 ,会破坏土壤结构 ,分散土粒 ,使土壤的透水性降低。其富含的反应基能与无机氮、磷结合并限制硝化作用和脱磷酸作…  相似文献   

4.
The feasibility of soil vapor extraction and bioventing technologies was examined for a petroleum hydrocarbon-contaminated site. The test site was highly contaminated with toluene, ethylbenzene, and xylene, due to leakage from petroleum storage tanks. Three respiration tests demonstrated that the test site conditions were appropriate for application of air-based remediation technologies. The oxygen consumption rates ranged from 4.32 to 7.68 %-O2/day and biodegradation rates ranged from 2.72 to 4.84?mg/kg-day in respiration tests. In a 120-day soil vapor extraction pilot test, high initial mass removals (with tailing effects) were observed. As expected for the soil vapor extraction, the volatilization rate was much higher than the biodegradation rate. In a bioventing trial, the biodegradation effect was predominant, but a tailing effect was not observed. From this study, the suggested sequence of remediation is to construct an integrated system of soil vapor extraction and bioventing and initially operate the soil vapor extraction system until the volatilization rate becomes smaller than the biodegradation rate. After that, the system needs to be changed over to a bioventing mode. Field demonstration supports the feasibility of the proposed integrated system.  相似文献   

5.
Ecotoxicity benchmarks for petroleum mixtures can be used in a screening-level ecological risk assessment. Data from studies evaluating the toxicity of total petroleum hydrocarbons (TPH) to plants and soil invertebrates were reviewed for possible application to soil benchmark development. Toxicity data included LOAECs; estimated EC25s, EC20s, and LC50s; effective concentrations that caused greater than a 20% level of effect; and NOAECs. The variabilities in petroleum material, chemical analytical methodology, age of hydrocarbon-soil contact, nutrient amendment, and measured effects levels did not permit much meaningful aggregation of the data. Tenth, twenty-fifth, and fiftieth percentiles of toxicity and no-effects data are presented for unaggregated results within studies. Effects on invertebrates often occurred at concentrations of TPH lower than those associated with effects on plants. Lighter mixtures generally were associated with lower ranges of effects concentrations than heavier crude oil. Few aged and non-aged samples were available from the same study, and these did not show obvious trends regarding toxicity. Similarly, the addition of nutrients to promote bioremediation was not observed across studies to alter effective or nontoxic concentrations in a systematic way. Existing toxicity data are not sufficient to establish broadly applicable TPH ecotoxicity screening benchmarks with much confidence, even for specific mixtures.  相似文献   

6.
The proper design of a bioremediation strategy for petroleum-contaminated sites requires a reasonable estimate of the biodegradation rate constant, which is not easy due to spatial heterogeneity. Accordingly, predictive models were developed by completing a bioventing study at the meso-scale. Reactors holding 4 kg of disturbed soil were tested using five different types of soils. Using statistical analysis, a two-stage process was observed, with a fast rate of hydrocarbon degradation in the first 8 days and a slower rate in the remaining 22 days. Review of the correlations showed that the initial population of petroleum-degrading bacteria and increasing silt content had a positive effect on the degradation. A negative impact on the degradation rate was seen by increasing the fraction of organic matter and clay content. Comparison of previously completed micro-scale and meso-scale degradation rates gave a scale-up factor (SF) of 1.8 ± 0.5. Soils with an increased sand fraction had slightly higher SF values, whereas soils high in organic matter content had lower SF values. The measured SF values and developed correlations will help practitioners with site closure decisions, indicating the need for additional SF work to allow better transfer of meso-scale data to the field.  相似文献   

7.
The biodegradation of a mixture of benzene, toluene, ethylbenzene, xylene, (BTEX) and methyl-tert-butyl ether (MTBE) was studied in soil microcosms. Soil inoculation with the toluene-metabolising fungus Cladophialophora sp. strain T1 was evaluated in sterile and non-sterile soil. Induction of biodegradation capacity following BTEX addition was faster in the soil native microflora than in axenic soil cultures of the fungus. Toluene, ethylbenzenes, and the xylenes were metabolized by the fungus but biodegradation of benzene required the activity of the indigenous soil microorganisms. MTBE was not biodegraded under the tested environmental conditions. Biodegradation profiles were also examined under two pH conditions after a long term exposure to BTEX. At neutral conditions the presence of the fungus had little effect on the intrinsic soil biodegradation capacity. At an acidic pH, however, the activity of the indigenous degraders was inhibited and the presence of Cladophialophora sp. increased significantly the biodegradation rates of toluene and ethylbenzene. Comparison of the BTEX biodegradation rates measured in soil batches combining presence and absence of indigenous degraders and the fungal inoculum indicated that no severe antagonism occurred between the indigenous bacteria and Cladophialophora sp. The presence of the fungal inoculum at the end of the experiments was confirmed by PCR-TGGE analysis of small subunits of 18S rDNA.  相似文献   

8.
Aims:  To assess the changes in acute toxicity and biodegradation of benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) compounds in soil over time and compare the performances of biological and chemical techniques.
Methods and Results:  Biological methods ( lux -based bacterial biosensors, basal respiration and dehydrogenase activity) were related to changes in the concentration of the target compounds. There was an initial increase in toxicity determined by the constitutively expressed biosensor, followed by a continual reduction as degradation proceeded. The biosensor with the BTEX-specific promoter was most induced when BTEX concentrations were highest. The treatment with nutrient amendment had a significant increase in microbial activity, while the sterile control produced the lowest level of degradation.
Significance and Impact of the Study:  Luminescent biosensors were able to monitor changes in contaminant toxicity and bioavailability in aqueous extracts from BTEX-impacted soils as degradation proceeded. The integration of biological tests with chemical analysis enables a fuller understanding of the biodegradation processes occurring at their relative rates.
Conclusions:  The biological methods were successfully used in assessing the performance of different treatments for enhancing natural attenuation of BTEX from contaminated soils. While, chemical analysis showed biodegradation of parent BTEX compounds in biologically active soils, the biosensor assays reported on changes in bioavailability and potentially toxic intermediate fractions as they estimated the integrative effect of contaminants.  相似文献   

9.
The former site of a major petroleum storage facility adjacent to a major urban watercourse was found to have potentially significant concentrations of hydrocarbons in soil and groundwater that needed to be addressed prior to redevelopment. A series of intrusive investigations were undertaken to collect physical and chemical data for a Quantitative Risk Assessment (QRA) of potential impacts on human health and the wider environment, in order to derive a remedial strategy for redevelopment of the site for light industrial use. A site-specific QRA methodology was devel oped using both U.K. and U.S. guidance to produce Risk-Based Clean-up Levels (RBCLs) for benzene, and other petroleum hydrocarbons. The U.K. has no nationally based guidance on risk assessment and studies are designed by the consultant for submission to the U.K. Environment Agency (EA) for their approval. It is the EA's role to determine whether the work has been undertaken satisfactorily. To achieve these RBCLs, ex situ bioremediation was identified as the best practicable remedial option. This was carried out in windrows using mechanical aeration (to achieve oxygenation with ammonia nitrate granule and woodchip addition) for a total of approximately 5291?m3 of soil. The bioremediation process was successful in achieving the site specific RBCLs for benzene and for other hydrocarbons within an average of 5 to 6 weeks. This article describes the successful implementation of Risk-Based Corrective Action (RBCA) at this petroleum release site as a demonstration of how risk-based remedial standards for contaminated sites can be achieved with regulatory approval.  相似文献   

10.
Bioremediation is a widely accepted technology for the remediation of hydrocarbon-contaminated soil. Treatability studies are usually carried out to assess the biodegradation potential of the contaminants and to design optimal treatments. Laboratory studies measuring soil respiration are often used. One method consists of monitoring the mineralization of a 14C-labeled hydrocarbon surrogate added to the contaminated soil. This study investigates the ability of this method to properly predict the removal of the hydrocarbon contaminants initially found in soils. Mineralization of 14C-labeled hexadecane was monitored in seven soils contaminated with various hydrocarbon mixtures, both fresh and weathered, in microcosm experiments. Reduction of total petroleum hydrocarbon (TPH) concentrations was measured simultaneously in separate microcosms. Both types of microcosms were subjected to the same amendment regimes. For all soils, poor correlation was observed between the mineralization and TPH reduction data sets. Mineralization data supported contaminants removal data in only one soil. Findings indicate that the radioactive surrogate method does not reliably predict the extent of, and the effect of amendments on, the removal of the hydrocarbons initially present in soil, and may therefore predict suboptimal treatment regimes. Recommendations for soil treatability protocols are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号