首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light suppresses melatonin in humans, with the strongest response occurring in the short-wavelength portion of the spectrum between 446 and 477 nm that appears blue. Blue monochromatic light has also been shown to be more effective than longer-wavelength light for enhancing alertness. Disturbed circadian rhythms and sleep loss have been described as risk factors for astronauts and NASA ground control workers, as well as civilians. Such disturbances can result in impaired alertness and diminished performance. Prior to exposing subjects to short-wavelength light from light-emitting diodes (LEDs) (peak λ = 469 nm; 1/2 peak bandwidth = 26 nm), the ocular safety exposure to the blue LED light was confirmed by an independent hazard analysis using the American Conference of Governmental Industrial Hygienists exposure limits. Subsequently, a fluence-response curve was developed for plasma melatonin suppression in healthy subjects (n = 8; mean age of 23.9 ± 0.5 years) exposed to a range of irradiances of blue LED light. Subjects with freely reactive pupils were exposed to light between 2:00 and 3:30 AM. Blood samples were collected before and after light exposures and quantified for melatonin. The results demonstrate that increasing irradiances of narrowband blue-appearing light can elicit increasing plasma melatonin suppression in healthy subjects (P < 0.0001). The data were fit to a sigmoidal fluence-response curve (R(2) = 0.99; ED(50) = 14.19 μW/cm(2)). A comparison of mean melatonin suppression with 40 μW/cm(2) from 4,000 K broadband white fluorescent light, currently used in most general lighting fixtures, suggests that narrow bandwidth blue LED light may be stronger than 4,000 K white fluorescent light for suppressing melatonin.  相似文献   

2.
ABSTRACT

Blue light, with wavelengths shorter than 440–450 nm, is the most energetic radiation of the visible spectrum for the human eye, and its possible multiple effects on the human nervous and other systems have become a line of research by many investigators. The use of mobile devices whose screens emit various amounts of blue light is common nowadays. This study evaluated the efficiency of the blue light screen and control software technologies of eight different mobile devices. Emitted screen spectra of the different mobile devices according to different conditions of blue light emission software control were obtained using a spectrograph, and the derived spectra were compared with the melatonin suppression action spectrum. The amount of blue light emission and predicted melatonin suppression varied according to the unique software control and screen technology of each device. AMOLED screen technology, compared with other screen technologies, achieved better control of blue light emission. The effect of blue light filters depends on the screen technology; however, the melatonin suppression index of mobile devices is not reduced sufficiently by the use of blue light-attenuating software.  相似文献   

3.
The impact of breast cancer on women across the world has been extensive and severe. As prevalence of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a potential risk factor. This theory is supported by the epidemiological observations of decreased breast cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent relationship between light, melatonin and cancer, albeit complex. Recent developments in understanding melatonin regulation by light in humans are examined, with particular attention to factors that contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans and other mammalian species are discussed. Across five action spectra for circadian and other non-visual responses, a peak sensitivity between 446-484 nm was identified. Under highly controlled exposure circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it is important to continue to identify the basic related ocular physiology. Visual performance, rather than circadian function, has been the primary focus of architectural lighting systems. It is now necessary to reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physiological homeostasis and health.  相似文献   

4.
We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m?2 s?1) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations.  相似文献   

5.
Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED) and LED 2700 K lamps filtered with the new Ledtech’s Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.  相似文献   

6.
Blue light sensitivity of melatonin suppression and subjective mood and alertness responses in humans is recognized as being melanopsin based. Observations that long-wavelength (red) light can potentiate responses to subsequent short-wavelength (blue) light have been attributed to the bistable nature of melanopsin whereby it forms stable associations with both 11-cis and all-trans isoforms of retinaldehyde and uses light to transition between these states. The current study examined the effect of concurrent administration of blue and red monochromatic light, as would occur in real-world white light, on acute melatonin suppression and subjective mood and alertness responses in humans. Young healthy men (18-35 years; n = 21) were studied in highly controlled laboratory sessions that included an individually timed 30-min light stimulus of blue (λ(max) 479 nm) or red (λ(max) 627 nm) monochromatic light at varying intensities (10(13)-10(14) photons/cm(2)/sec) presented, either alone or in combination, in a within-subject randomized design. Plasma melatonin levels and subjective mood and alertness were assessed at regular intervals relative to the light stimulus. Subjective alertness levels were elevated after light onset irrespective of light wavelength or irradiance. For melatonin suppression, a significant irradiance response was observed with blue light. Co-administration of red light, at any of the irradiances tested, did not significantly alter the response to blue light alone. Under the current experimental conditions, the primary determinant of the melatonin suppression response was the irradiance of blue 479 nm light, and this was unaffected by simultaneous red light administration.  相似文献   

7.
Melatonin signals time of day and time of year in mammals by virtue of its pattern of secretion, which defines ‘biological night.’ It is supremely important for research on the physiology and pathology of the human biological clock. Light suppresses melatonin secretion at night using pathways involved in circadian photoreception. The melatonin rhythm (as evidenced by its profile in plasma, saliva, or its major metabolite, 6‐sulphatoxymelatonin [aMT6s] in urine) is the best peripheral index of the timing of the human circadian pacemaker. Light suppression and phase‐shifting of the melatonin 24 h profile enables the characterization of human circadian photoreception, and circulating concentrations of the hormone are used to investigate the general properties of the human circadian system in health and disease. Suppression of melatonin by light at night has been invoked as a possible influence on major disease risk as there is increasing evidence for its oncostatic effects. Exogenous melatonin acts as a ‘chronobiotic.’ Acutely, it increases sleep propensity during ‘biological day.’ These properties have led to successful treatments for serveal circadian rhythm disorders. Endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. The future holds much promise for melatonin as a research tool and as a therapy for various conditions.  相似文献   

8.
Melatonin signals time of day and time of year in mammals by virtue of its pattern of secretion, which defines 'biological night.' It is supremely important for research on the physiology and pathology of the human biological clock. Light suppresses melatonin secretion at night using pathways involved in circadian photoreception. The melatonin rhythm (as evidenced by its profile in plasma, saliva, or its major metabolite, 6-sulphatoxymelatonin [aMT6s] in urine) is the best peripheral index of the timing of the human circadian pacemaker. Light suppression and phase-shifting of the melatonin 24 h profile enables the characterization of human circadian photoreception, and circulating concentrations of the hormone are used to investigate the general properties of the human circadian system in health and disease. Suppression of melatonin by light at night has been invoked as a possible influence on major disease risk as there is increasing evidence for its oncostatic effects. Exogenous melatonin acts as a 'chronobiotic.' Acutely, it increases sleep propensity during 'biological day.' These properties have led to successful treatments for serveal circadian rhythm disorders. Endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. The future holds much promise for melatonin as a research tool and as a therapy for various conditions.  相似文献   

9.
Melatonin signals time of day and time of year in mammals by virtue of its pattern of secretion, which defines 'biological night.' It is supremely important for research on the physiology and pathology of the human biological clock. Light suppresses melatonin secretion at night using pathways involved in circadian photoreception. The melatonin rhythm (as evidenced by its profile in plasma, saliva, or its major metabolite, 6-sulphatoxymelatonin [aMT6s] in urine) is the best peripheral index of the timing of the human circadian pacemaker. Light suppression and phase-shifting of the melatonin 24 h profile enables the characterization of human circadian photoreception, and circulating concentrations of the hormone are used to investigate the general properties of the human circadian system in health and disease. Suppression of melatonin by light at night has been invoked as a possible influence on major disease risk as there is increasing evidence for its oncostatic effects. Exogenous melatonin acts as a 'chronobiotic.' Acutely, it increases sleep propensity during 'biological day.' These properties have led to successful treatments for serveal circadian rhythm disorders. Endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. The future holds much promise for melatonin as a research tool and as a therapy for various conditions.  相似文献   

10.
Light is an indispensable part of routine laboratory work in which conventional light is generally used. Light‐emitting diodes (LEDs) have come to replace conventional light, and thus could be a potent target in biomedical studies. Since blue light is a major component of visible light wavelength, in this study, using a somatic cell from the African green monkey kidney, we assessed the possible consequences of the blue spectra of LED light in future animal experiments and proposed a potent mitigation against light‐induced damage. COS‐7 cells were exposed to blue LED light (450 nm) and the growth and deoxyribonucleic acid (DNA) damage were assessed at different exposure times. A higher suppression in cell growth and viability was observed under a longer period of blue LED light exposure. The number of apoptotic cells increased as the light exposure time was prolonged. Reactive oxygen species (ROS) generation was also elevated in accordance to the extension of light exposure time. A comparison with dark‐maintained cells revealed that the upregulation of ROS by blue LED light plays a significant role in causing cellular dysfunction in DNA in a time‐dependent manner. In turn, antioxidant treatment has been shown to improve cell growth and viability under blue LED light conditions. This indicates that antioxidants have potential against blue LED light‐induced somatic cell damage. It is expected that this study will contribute to the understanding of the basic mechanism of somatic cell death under visible light and maximize the beneficial use of LED light in future animal experiments.  相似文献   

11.
The circadian and neurobehavioral effects of light are primarily mediated by a retinal ganglion cell photoreceptor in the mammalian eye containing the photopigment melanopsin. Nine action spectrum studies using rodents, monkeys, and humans for these responses indicate peak sensitivities in the blue region of the visible spectrum ranging from 459 to 484 nm, with some disagreement in short-wavelength sensitivity of the spectrum. The aim of this work was to quantify the sensitivity of human volunteers to monochromatic 420-nm light for plasma melatonin suppression. Adult female (n=14) and male (n=12) subjects participated in 2 studies, each employing a within-subjects design. In a fluence-response study, subjects (n=8) were tested with 8 light irradiances at 420 nm ranging over a 4-log unit photon density range of 10(10) to 10(14) photons/cm(2)/sec and 1 dark exposure control night. In the other study, subjects (n=18) completed an experiment comparing melatonin suppression with equal photon doses (1.21 x 10(13) photons/cm(2)/sec) of 420 nm and 460 nm monochromatic light and a dark exposure control night. The first study demonstrated a clear fluence-response relationship between 420-nm light and melatonin suppression (p<0.001) with a half-saturation constant of 2.74 x 10(11) photons/cm(2)/sec. The second study showed that 460-nm light is significantly stronger than 420-nm light for suppressing melatonin (p<0.04). Together, the results clarify the visible short-wavelength sensitivity of the human melatonin suppression action spectrum. This basic physiological finding may be useful for optimizing lighting for therapeutic and other applications.  相似文献   

12.
The beneficial effects of light‐emitting diode (LED) irradiation have been reported in various pathologies, including cancer. However, its effect in pancreatic cancer cells remains unclear. Herein, we demonstrated that blue LED of 460 nm regulated pancreatic cancer cell proliferation and apoptosis by suppressing the expression of apoptosis‐related factors, such as mutant p53 and B‐cell lymphoma 2 (Bcl‐2), and decreasing the expression of RAC‐β serine/threonine kinase 2 (AKT2), the phosphorylation of protein kinase B (AKT), and mammalian target of rapamycin (mTOR). Blue LED irradiation also increased the levels of cleaved poly‐(ADP‐ribose) polymerase (PARP) and caspase‐3 in pancreatic cancer cells, while it suppressed AKT2 expression and inhibited tumor growth in xenograft tumor tissues. In conclusion, blue LED irradiation suppressed pancreatic cancer cell and tumor growth by regulating AKT/mTOR signaling. Our findings indicated that blue LEDs could be used as a nonpharmacological treatment for pancreatic cancer.  相似文献   

13.
LED lighting is predicted to constitute 70% of the outdoor and residential lighting markets by 2020. While the use of LEDs promotes energy and cost savings relative to traditional lighting technologies, little is known about the effects these broad‐spectrum “white” lights will have on wildlife, human health, animal welfare, and disease transmission. We conducted field experiments to compare the relative attractiveness of four commercially available “domestic” lights, one traditional (tungsten filament) and three modern (compact fluorescent, “cool‐white” LED and “warm‐white” LED), to aerial insects, particularly Diptera. We found that LEDs attracted significantly fewer insects than other light sources, but found no significant difference in attraction between the “cool‐” and “warm‐white” LEDs. Fewer flies were attracted to LEDs than alternate light sources, including fewer Culicoides midges (Diptera: Ceratopogonidae). Use of LEDs has the potential to mitigate disturbances to wildlife and occurrences of insect‐borne diseases relative to competing lighting technologies. However, we discuss the risks associated with broad‐spectrum lighting and net increases in lighting resulting from reduced costs of LED technology.  相似文献   

14.
BACKGROUND AND PURPOSE: A novel light-emitting diode (LED) light source for use in animal-habitat lighting was evaluated. METHODS: The LED was evaluated by comparing its effectiveness with that of cool white fluorescent light (CWF) in suppressing pineal gland melatonin content and maintaining normal retinal physiology, as evaluated by use of electroretinography (ERG), and morphology. RESULTS: Pineal melatonin concentration was equally suppressed by LED and CWF light at five light illuminances (100, 40, 10, 1, and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light, compared with values for unexposed controls. There were no differences in ERG a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histologic examination indicated no differences in retinal thickness, rod outer segment length, and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for 14 days. Furthermore, in all eyes, the retinal pigmented epithelium was intact and not vacuolated, whereas rod outer segments were of normal thickness. CONCLUSION: LED light does not cause retinal damage and can suppress pineal melatonin content at intensities similar to CWF light intensities.  相似文献   

15.
Light is an important environmental stimulus for the entrainment of the circadian clock and for increasing alertness. The intrinsically photosensitive ganglion cells in the retina play an important role in transferring this light information to the circadian system and they are elicited in particular by short-wavelength light. Exposure to short wavelengths is reduced, for instance, in elderly people due to yellowing of the ocular lenses. This reduction may be involved in the disrupted circadian rhythms observed in aged subjects. Here, we tested the effects of reduced blue light exposure in young healthy subjects (n?=?15) by using soft orange contact lenses (SOCL). We showed (as expected) that a reduction in the melatonin suppressing effect of light is observed when subjects wear the SOCL. However, after chronic exposure to reduced (short wavelength) light for two consecutive weeks we observed an increase in sensitivity of the melatonin suppression response. The response normalized as if it took place under a polychromatic light pulse. No differences were found in the dim light melatonin onset or in the amplitude of the melatonin rhythms after chronic reduced blue light exposure. The effects on sleep parameters were limited. Our results demonstrate that the non-visual light system of healthy young subjects is capable of adapting to changes in the spectral composition of environmental light exposure. The present results emphasize the importance of considering not only the short-term effects of changes in environmental light characteristics.  相似文献   

16.
Light is necessary for life, and artificial light improves visual performance and safety, but there is an increasing concern of the potential health and environmental impacts of light. Findings from a number of studies suggest that mistimed light exposure disrupts the circadian rhythm in humans, potentially causing further health impacts. However, a variety of methods has been applied in individual experimental studies of light-induced circadian impacts, including definition of light exposure and outcomes. Thus, a systematic review is needed to synthesize the results. In addition, a review of the scientific evidence on the impacts of light on circadian rhythm is needed for developing an evaluation method of light pollution, i.e., the negative impacts of artificial light, in life cycle assessment (LCA). The current LCA practice does not have a method to evaluate the light pollution, neither in terms of human health nor the ecological impacts. The systematic literature survey was conducted by searching for two concepts: light and circadian rhythm. The circadian rhythm was searched with additional terms of melatonin and rapid-eye-movement (REM) sleep. The literature search resulted to 128 articles which were subjected to a data collection and analysis. Melatonin secretion was studied in 122 articles and REM sleep in 13 articles. The reports on melatonin secretion were divided into studies with specific light exposure (101 reports), usually in a controlled laboratory environment, and studies of prevailing light conditions typical at home or work environments (21 studies). Studies were generally conducted on adults in their twenties or thirties, but only very few studies experimented on children and elderly adults. Surprisingly many studies were conducted with a small sample size: 39 out of 128 studies were conducted with 10 or less subjects. The quality criteria of studies for more profound synthesis were a minimum sample size of 20 subjects and providing details of the light exposure (spectrum or wavelength; illuminance, irradiance or photon density). This resulted to 13 qualified studies on melatonin and 2 studies on REM sleep. Further analysis of these 15 reports indicated that a two-hour exposure to blue light (460 nm) in the evening suppresses melatonin, the maximum melatonin-suppressing effect being achieved at the shortest wavelengths (424 nm, violet). The melatonin concentration recovered rather rapidly, within 15 min from cessation of the exposure, suggesting a short-term or simultaneous impact of light exposure on the melatonin secretion. Melatonin secretion and suppression were reduced with age, but the light-induced circadian phase advance was not impaired with age. Light exposure in the evening, at night and in the morning affected the circadian phase of melatonin levels. In addition, even the longest wavelengths (631 nm, red) and intermittent light exposures induced circadian resetting responses, and exposure to low light levels (5–10 lux) at night when sleeping with eyes closed induced a circadian response. The review enables further development of an evaluation method of light pollution in LCA regarding the light-induced impacts on human circadian system.  相似文献   

17.
1. Current knowledge of the mechanisms of circadian and photic regulation of retinal melatonin in vertebrates is reviewed, with a focus on recent progress and unanswered questions. 2. Retinal melatonin synthesis is elevated at night, as a result of acute suppression by light and rhythmic regulation by a circadian oscillator, or clock, which has been localized to the eye in some species. 3. The development of suitable in vitro retinal preparations, particularly the eyecup from the African clawed frog, Xenopus laevis, has enabled identification of neural, cellular, and molecular mechanisms of retinal melatonin regulation. 4. Recent findings indicate that retinal melatonin levels can be regulated at multiple points in indoleamine metabolic pathways, including synthesis and availability of the precursor serotonin, activity of the enzyme serotonin N-acetyltransferase, and a novel pathway for degradation of melatonin within the retina. 5. Retinal dopamine appears to act through D2 receptors as a signal for light in this system, both in the acute suppression of melatonin synthesis and in the entrainment of the ocular circadian oscillator. 6. A recently developed in vitro system that enables high-resolution measurement of retinal circadian rhythmicity for mechanistic analysis of the circadian oscillator is described, along with preliminary results that suggest its potential for elucidating general circadian mechanisms. 7. A model describing hypothesized interactions among circadian, neurochemical, and cellular mechanisms in regulation of retinal melatonin is presented.  相似文献   

18.
In this study, we examined differences among the gonadotropin-inhibitory hormone (GnIH), kisspeptin 1 (Kiss1), Kiss 1 receptor (G-protein-coupled receptor 54; GPR54), melatonin receptor 1 (MT1), and melatonin levels in brain cells of goldfish Carassius auratus exposed to white fluorescent light and three light-emitting diode (LED) wavelength and melatonin treatments in the culture medium. In the green and blue LED treatment groups, GnIH and MT1 mRNA expression levels were significantly lower than in the other groups; conversely, levels significantly increased in the melatonin treatment groups. Additionally, expression levels of Kiss1 and its receptor, GPR54, in the white fluorescent and red LED light groups were significantly lower than the other groups, but levels also significantly decreased in the melatonin treatment groups. These results suggest that white fluorescent and red wavelengths downregulate the production of neurohormones in the brains of C. auratus and thus may inhibit sexual maturation in goldfish.  相似文献   

19.
More energy-efficient, readily dimmable, long-lasting and more affordable light-emitting diode (LED) lights are increasingly finding applications in poultry production facilities. Despite anecdotal evidence about the benefits of such lighting on bird performance and behavior, concrete research data were lacking. In this study, a commercial poultry-specific LED light (dim-to-blue, controllable correlated color temperature (CCT) from 4500 to 5300 K) and a typical compact fluorescent light (CFL) (soft white, CCT=2700 K) were compared with regards to their effects on growing performance, activity levels, and feather and comb conditions of non-beak-trimmed W-36 pullets during a 14-week rearing period. A total of 1280-day-old pullets in two successive batches, 640 birds each, were used in the study. For each batch, pullets were randomly assigned to four identical litter-floor rooms equipped with perches, two rooms per light regimen, 160 birds per room. Body weight, BW uniformity (BWU), BW gain (BWG) and cumulative mortality rate (CMR) of the pullets were determined every 2 weeks from day-old to 14 weeks of age (WOA). Activity levels of the pullets at 5 to 14 WOA were delineated by movement index. Results revealed that pullets under the LED and CFL lights had comparable BW (1140±5 g v. 1135±5 g, P=0.41), BWU (90.8±1.0% v. 91.9±1.0%, P=0.48) and CMR (1.3±0.6% v. 2.7±0.6%, P=0.18) at 14 WOA despite some varying BWG during the rearing. Circadian activity levels of the pullets were higher under the LED light than under the CFL light, possibly resulting from differences in spectrum and/or perceived light intensity between the two lights. No feather damage or comb wound was apparent in either light regimen at the end of the rearing period. The results contribute to understanding the impact of emerging LED lights on pullets rearing which is a critical component of egg production.  相似文献   

20.
Some Perturbations That Disturb the Circadian Melatonin Rhythm   总被引:3,自引:0,他引:3  
The circadian melatonin rhythm is highly reproducible and generally not easily altered. The few perturbations that are capable of significantly changing either the amplitude or the pattern of the 24-h melatonin rhythm are summarized herein. Aging alters cyclic melatonin production by decreasing the amplitude of the nocturnal melatonin peak in all species in which it has been studied. The best known acute suppressor of nocturnal melatonin is light exposure. The brightness of light required to acutely depress pineal melatonin production is species dependent; of the visible wavelengths, those in the blue range (∼500-520 nm) seem most effective in suppressing melatonin production. Nonvisible, nonionizing radiation in the extremely low frequency range (e.g., 60 Hz) seems also capable of altering pineal melatonin synthesis. Hormones have relatively little influence on the circadian production of melatonin, although either adrenalectomy or hypo-physectomy does attenuate the amplitude of the melatonin cycle. Exercise at the time of high melatonin production rapidly depresses pineal concentrations of the indole without influencing its synthesis; the mechanism of this suppression remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号