首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study primarily focuses on describing aerosol optical depth (AOD), its distribution pattern and seasonal variation, and modelling Particulate Matter Concentrations in Chennai. The frequency distribution of AOD and PM2.5 demonstrates that AOD can be used as a proxy for estimating PM2.5 in the study region as the occurrence of AOD almost resonates with that of PM2.5. The seasonal variation of AOD and PM2.5 revealed that during the winter (October–January) and summer (February–May) seasons, AOD reasonably followed the trend of PM2.5. However, during the monsoon period, AOD showed random variations. Different models like linear and non-linear regression models and machine learning models such as random forest (RF) have been developed for PM2.5 estimation. The model's performance in different stations and seasons has been assessed. The effect of meteorology and other factors in the model has also been assessed. From linear and non-linear model analysis, AOD was a significant parameter in estimating PM2.5. The Random Forest model was the stable model for the study region, with a model R2 of 0.53 and an RMSE of 15.89 μg/m3. The inclusion of meteorological parameters like relative humidity, wind speed, and wind direction decreased the error in prediction by 17.45 μg/m3. The seasonal and spatial analysis indicates that the prediction capability of models varies with stations and seasons. The best performing model was found to be Model RF, and the model could explain about 53.14% of the variability in PM2.5 concentration occurrence in the study region with a prediction error of 15.89 μg/m3.  相似文献   

2.
Air pollution is one of the most serious environmental issues faced by humans, and it affects the quality of life in cities. PM2.5 forecasting models can be used to create strategies for assessing and warning the public about anticipated harmful levels of air pollution. Accurate pollutant concentration measurements and forecasting are critical criteria for assessing air quality and are the foundation for making the right strategic decisions. Data-driven machine learning models for PM2.5 forecasting have gained attention in the recent past. In this study, PM2.5 prediction for Hyderabad city was carried out using various machine learning models viz. Multi-Linear Regression (MLR), decision tree (DT), K-Nearest Neighbors (KNN), Random Forest (RF), and XGBoost. A deep learning model, the Long Short-Term Memory (LSTM) model, was also used in this study. The results obtained were finally compared based on error and R2 value. The best model was selected based on its maximum R2 value and minimal error. The model's performance was further improved using the randomized search CV hyperparameter optimization technique. Spatio-temporal air quality analysis was initially conducted, and it was found that the average winter PM2.5 concentrations were 68% higher than the concentrations in summer. The analysis revealed that XGBoost regression was the best-performing machine learning model with an R2 value of 0.82 and a Mean Absolute Error (MAE) of 7.01 μg/ m3, whereas the LSTM deep learning model performed better than XGBoost regression for PM2.5 modeling with an R2 value of 0.89 and an MAE of 5.78 μg/ m3.  相似文献   

3.
城市群已成为中国城市发展的主要形式,城市化发展引发的一系列环境污染问题成为目前的研究重点之一,尤其是近年来明显的空气污染问题。由于传统的针对某一城市地区进行细致研究,难以解决在城市聚集的城市群下形成的区域性空气污染来源和影响机制等问题,使区域性空气污染造成的负面效应难以评估。通过构建综合评估模型范式,并运用空间分析,对京津冀168个区县2000年,2005年,2010年,2015年PM2.5人口暴露风险、人类活动对PM2.5的贡献、以及5种土地利用类型的"源汇"特征进行了实证研究。结果发现:(1)2000—2015年,京津冀城市群的人口暴露风险、空气污染分布、综合评估结果总体呈现北低南高的现象。(2)2000—2015年,各县域的人口暴露风险和空气污染的程度、范围呈上升趋势。不同的土地利用类型具有不同的源汇特征,且对污染的贡献不同。本研究通过综合评估模型范式对城市群或区域城市发展与空气质量的权衡关系模式开展量化解析,为城市的可持续发展提供了科学的范式和初步的实证示范。  相似文献   

4.
To evaluate the relationship between air pollution and morbidity and mortality in epidemiological studies, the exposure of populations must be defined. Generally, ambient air monitoring networks are the source of the exposure data for these studies. In this study, we developed methods to define population exposure regions that represent minimal variation in air pollutant concentrations. We evaluated the spatial and temporal variation in concentrations for particulate matter less than 2.5 μm (PM2.5) and 10 μm (PM10) and ozone (O3) across New York State. The results from the PM2.5 and ozone analysis indicate a significant degree of regional transport and showed regions of consistent concentrations of 100 and 50 miles, respectively, around each monitor. PM10 analysis indicated little temporal and spatial variation for this pollutant and larger regions were adopted. The exposure characterization regions for PM2.5, PM10, and ozone have been used in ecological epidemiological investigations by the New York State Department of Health. This work was conducted under the Environmental Public Health Tracking grant from the Centers for Disease Control and Prevention.  相似文献   

5.
Household air pollution (HAP) due to solid fuel use is a major public health threat in low-income countries. Most health effects are thought to be related to exposure to the fine particulate matter (PM) component of HAP, but it is currently impractical to measure personal exposure to PM in large studies. Carbon monoxide (CO) has been shown in cross-sectional analyses to be a reliable surrogate for particles<2.5 µm in diameter (PM2.5) in kitchens where wood-burning cookfires are a dominant source, but it is unknown whether a similar PM2.5-CO relationship exists for personal exposures longitudinally. We repeatedly measured (216 measures, 116 women) 24-hour personal PM2.5 (median [IQR] = 0.11 [0.05, 0.21] mg/m3) and CO (median [IQR] = 1.18 [0.50, 2.37] mg/m3) among women cooking over open woodfires or chimney woodstoves in Guatemala. Pollution measures were natural-log transformed for analyses. In linear mixed effects models with random subject intercepts, we found that personal CO explained 78% of between-subject variance in personal PM2.5. We did not see a difference in slope by stove type. This work provides evidence that in settings where there is a dominant source of biomass combustion, repeated measures of personal CO can be used as a reliable surrogate for an individual''s PM2.5 exposure. This finding has important implications for the feasibility of reliably estimating long-term (months to years) PM2.5 exposure in large-scale epidemiological and intervention studies of HAP.  相似文献   

6.
研究城市群建成区绿色基础设施对PM2.5的消减效应,有助于为城市群应对气候变化采取的可持续发展战略提供理论支撑。以长江中游城市群建成区为例,基于2000—2020年建成区面积数据、土地覆盖数据以及PM2.5数据系统分析城市群PM2.5浓度的时空演变特征,以林地、草地、耕地、湿地、水体等5种绿色基础设施为驱动因子,采用地理探测器模型中的因子探测与交互作用探测,探索城市群建成区绿色基础设施对PM2.5浓度的削减效应。同时,结合夜间灯光数据以及约束线方法,进一步剖析城市化水平对建成区绿色基础设施的约束效应。结果表明:(1)2000—2020年期间,长江中游城市群年均PM2.5浓度在时序上呈现先升后降的“倒U型”趋势,在空间上呈现由西北向东南级差化递减的分异特征。(2)2000—2020年期间,长江中游城市群建成区绿色基础设施对PM2.5存在削减效应,但历年削减率均不超过4%,其中扩张区的削减效应显著高于老城区。(3)因子探测结果表明,长江中游城市群各绿色基础设施...  相似文献   

7.

Objective

Ambient fine particulate matter (PM2.5) pollution is currently a major public health concern in Chinese urban areas. However, PM2.5 exposure primarily occurs indoors. Given such, we conducted this study to characterize the indoor-outdoor relationship of PM2.5 mass concentrations for urban residences in Beijing.

Methods

In this study, 24-h real-time indoor and ambient PM2.5 mass concentrations were concurrently collected for 41 urban residences in the non-heating season. The diurnal variation of pollutant concentrations was characterized. Pearson correlation analysis was used to examine the correlation between indoor and ambient PM2.5 mass concentrations. Regression analysis with ordinary least square was employed to characterize the influences of a variety of factors on PM2.5 mass concentration.

Results

Hourly ambient PM2.5 mass concentrations were 3–280 μg/m3 with a median of 58 μg/m3, and hourly indoor counterpart were 4–193 μg/m3 with a median of 34 μg/m3. The median indoor/ambient ratio of PM2.5 mass concentration was 0.62. The diurnal variation of residential indoor and ambient PM2.5 mass concentrations tracked with each other well. Strong correlation was found between indoor and ambient PM2.5 mass concentrations on the community basis (coefficients: r≥0.90, p<0.0001), and the ambient data explained ≥84% variance of the indoor data. Regression analysis suggested that the variables, such as traffic conditions, indoor smoking activities, indoor cleaning activities, indoor plants and number of occupants, had significant influences on the indoor PM2.5 mass concentrations.

Conclusions

PM2.5 of ambient origin made dominant contribution to residential indoor PM2.5 exposure in the non-heating season under the high ambient fine particle pollution condition. Nonetheless, the large inter-residence variability of infiltration factor of ambient PM2.5 raised the concern of exposure misclassification when using ambient PM2.5 mass concentrations as exposure surrogates. PM2.5 of indoor origin still had minor influence on indoor PM2.5 mass concentrations, particularly at 11:00–13:00 and 22:00–0:00. The predictive models suggested that particles from traffic emission, secondary aerosols, particles from indoor smoking, resuspended particles due to indoor cleaning and particles related to indoor plants contributed to indoor PM2.5 mass concentrations in this study. Real-time ventilation measurements and improvement of questionnaire design to involve more variables subject to built environment were recommended to enhance the performance of the predictive models.  相似文献   

8.

Background

Fine particulate matter (PM2.5) has been linked to cardiovascular disease, possibly via accelerated atherosclerosis. We examined associations between the progression of the intima-medial thickness (IMT) of the common carotid artery, as an indicator of atherosclerosis, and long-term PM2.5 concentrations in participants from the Multi-Ethnic Study of Atherosclerosis (MESA).

Methods and Results

MESA, a prospective cohort study, enrolled 6,814 participants at the baseline exam (2000–2002), with 5,660 (83%) of those participants completing two ultrasound examinations between 2000 and 2005 (mean follow-up: 2.5 years). PM2.5 was estimated over the year preceding baseline and between ultrasounds using a spatio-temporal model. Cross-sectional and longitudinal associations were examined using mixed models adjusted for confounders including age, sex, race/ethnicity, smoking, and socio-economic indicators. Among 5,362 participants (5% of participants had missing data) with a mean annual progression of 14 µm/y, 2.5 µg/m3 higher levels of residential PM2.5 during the follow-up period were associated with 5.0 µm/y (95% CI 2.6 to 7.4 µm/y) greater IMT progressions among persons in the same metropolitan area. Although significant associations were not found with IMT progression without adjustment for metropolitan area (0.4 µm/y [95% CI −0.4 to 1.2 µm/y] per 2.5 µg/m3), all of the six areas showed positive associations. Greater reductions in PM2.5 over follow-up for a fixed baseline PM2.5 were also associated with slowed IMT progression (−2.8 µm/y [95% CI −1.6 to −3.9 µm/y] per 1 µg/m3 reduction). Study limitations include the use of a surrogate measure of atherosclerosis, some loss to follow-up, and the lack of estimates for air pollution concentrations prior to 1999.

Conclusions

This early analysis from MESA suggests that higher long-term PM2.5 concentrations are associated with increased IMT progression and that greater reductions in PM2.5 are related to slower IMT progression. These findings, even over a relatively short follow-up period, add to the limited literature on air pollution and the progression of atherosclerotic processes in humans. If confirmed by future analyses of the full 10 years of follow-up in this cohort, these findings will help to explain associations between long-term PM2.5 concentrations and clinical cardiovascular events. Please see later in the article for the Editors'' Summary  相似文献   

9.
Forest ecosystem plays an important role as carbon sinks in Southwest China. Currently, remote sensing technology has been widely used to substantially model the high temporal and spatial variation in gross primary production (GPP) at a site or regional scale. However, during the growing season, the regional uncertainty of GPP in the forest ecosystem and the relative contributions of climate variations to interannual variation (IAV) of GPP are not well understood across Southwest China. Our research focuses on the joint analysis of the three-cornered hat (TCH) algorithm and uses the contribution index to analyse the model's uncertainties varying with plant functional types (PFTs), climate zones, and the contribution of climate variabilities to GPP IAV. Here, three GPP datasets are used to investigate how climate variabilities contribute to the GPP IAV during the growing season. The uncertainties in GPP vary from 829.33 g C m−2 year−1 to 2031.86 g C m−2 year−1 for different models in different climate zones and different PFTs. Additionally, the results highlight that precipitation dominates the interannual variation in GPP in forest ecosystem during the growing season in Southwest China. It makes the largest contribution (34.46%) to the IAV of GPP in the climate zone of E (cold subtropical highland area) and the largest contribution (80.83%) to PFTs of the MF (mixed forest). Our study suggests the availability and applicability of GPP products can be used to assess GPP uncertainties and analyse the contributions of climate factors to GPP IAV in forest ecosystem or other ecosystems.  相似文献   

10.
Exposure to atmospheric particulate matter PM2.5 (aerodynamic diameter ≤ 2.5 μm) has been epidemiologically associated with respiratory illnesses. However, recent data have suggested that PM2.5 is able to infiltrate into circulation and elicit a systemic inflammatory response. Potential adverse effects of air pollutants to the central nervous system (CNS) have raised concerns, but whether PM2.5 causes neurotoxicity remains unclear. In this study, we have demonstrated that PM2.5 impairs the tight junction of endothelial cells and increases permeability and monocyte transmigration across endothelial monolayer in vitro, indicating that PM2.5 is able to disrupt blood–brain barrier integrity and gain access to the CNS. Exposure of primary neuronal cultures to PM2.5 resulted in decrease in cell viability and loss of neuronal antigens. Furthermore, supernatants collected from PM2.5‐treated macrophages and microglia were also neurotoxic. These macrophages and microglia significantly increased extracellular levels of glutamate following PM2.5 exposure, which were negatively correlated with neuronal viability. Pre‐treatment with NMDA receptor antagonist MK801 alleviated neuron loss, suggesting that PM2.5 neurotoxicity is mediated by glutamate. To determine the potential source of excess glutamate production, we investigated glutaminase, the main enzyme for glutamate generation. Glutaminase was reduced in PM2.5‐treated macrophages and increased in extracellular vesicles, suggesting that PM2.5 induces glutaminase release through extracellular vesicles. In conclusion, these findings indicate PM2.5 as a potential neurotoxic factor, crucial to understanding the effects of air pollution on the CNS.

  相似文献   


11.
刘畅  胡尚春  唐立娜 《生态学报》2021,41(15):6227-6233
近年来随着我国城市的快速发展,空气污染作为城市生态环境破坏的首要问题日益严重。因此探究城市绿地中的植物群落是否能够消减大气细颗粒物浓度及其变化特征成为公众和学者广泛关注的焦点。选取位于寒地城市哈尔滨的东北林业大学作为研究对象,通过对校园PM2.5浓度进行测定和校园植物群落进行调查,定量地分析不同植物群落对PM2.5浓度的消减作用、PM2.5浓度的时间变化规律、PM2.5浓度与温度和空气相对湿度之间的关系。结果显示:(1)PM2.5浓度日变化呈"双峰单谷"型,早晚偏高;季节变化是夏季PM2.5浓度最低,秋季PM2.5浓度最高。(2)不同结构的植物群落对大气细颗粒物的削减效果略有差异,乔灌草配置型绿地的PM2.5消减率为30.30%,消减效果最佳;乔草和灌草的PM2.5消减率分别为14.30%和7.77%,消减效果较差。(3)PM2.5浓度与温度呈负相关关系,与空气相对湿度呈正相关关系。  相似文献   

12.
?Ambient fine particulate matter (PM2.5) could induce cardiovascular diseases (CVD), but the mechanism remains unknown. To investigate the roles of epidermal growth factor receptor (EGFR) and NOD‐like receptors (NLRs) in PM2.5‐induced cardiac injury, we set up a BALB/c mice model of PM2.5‐induced cardiac inflammation and fibrosis with intratracheal instillation of PM2.5 suspension (4.0 mg/kg b.w.) for 5 consecutive days (once per day). After exposure, we found that mRNA levels of CXCL1, interleukin (IL)‐6, and IL‐18 were elevated, but interestingly, mRNA level of NLRP12 was significant decreased in heart tissue from PM2.5‐induced mice compared with those of saline‐treated mice using real‐time PCR. Protein levels of phospho‐EGFR (Tyr1068), phospho‐Akt (Thr308), NLRP3, NF‐κB‐p52/p100, and NF‐κB‐p65 in heart tissue of PM2.5‐exposed mice were all significantly increased using immunohistochemistry or Western blotting. Therefore, PM2.5 exposure could induce cardiac inflammatory injury in mice, which may be involved with EGFR/Akt signaling, NLRP3, and NLRP12.  相似文献   

13.
Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi''an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi’an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi''an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5.  相似文献   

14.
娄彩荣  刘红玉  李玉玲  李玉凤 《生态学报》2016,36(21):6719-6729
颗粒物PM_(2.5)、PM_(10)是近年来我国大气首要污染物,威胁环境和人类健康。地表景观结构直接或间接影响PM_(2.5)、PM_(10)浓度,了解其影响过程和机理对于改善生态环境具有重要意义。系统总结了国内外关于PM_(2.5)、PM_(10)对地表景观结构响应的研究成果,指出研究中出现不确定性的可能影响因素,并对今后的发展方向进行展望。得出基本结论:(1)地表景观类型的构成及其格局显著影响大气颗粒物浓度,对PM_(2.5)、PM_(10)起到"源"和"汇"的作用。(2)地表景观结构引起局地气候变化并影响颗粒物的迁移转化,但其影响过程和机理复杂,研究结论并不明确。(3)颗粒物浓度和地表景观数据主要通过实际监测或遥感处理方法获得,但因为获取方法、监测点微观环境及遥感影像等因素影响,导致数据具有不确定性,加上时空尺度相对应的复杂性,大大限制了地表景观结构与PM_(2.5)、PM_(10)响应关系的研究进展,是未来要突破的难点。(4)PM_(2.5)、PM_(10)对地表景观结构响应的区域时空差异及过程,局地小气候变化对颗粒物浓度的影响过程和强度,主要景观类型尤其是水体、湿地景观对大气颗粒物浓度的影响过程、机理与贡献程度等是未来需要关注的方向。  相似文献   

15.
PM2.5严重危害环境安全和人体健康,虽然国内外大气PM2.5状况已有好转,但雾霾天气仍然时有发生。植物能有效吸附和净化大气中PM2.5,其净化作用受到生态学广泛关注。随着研究内容的深入,该领域研究尺度由宏观尺度转向微观尺度,研究对象由植被区转向植物个体,研究方法由野外监测转向人工控制法。因此在区域尺度上对比了植被、非植被区PM2.5浓度差异及不同树种单位叶面积PM2.5吸滞量,以风洞、熏气法两种研究方法归纳了人工控制条件下植物净化PM2.5的研究成果,在大气PM2.5浓度和气象因素两方面探讨了环境因素对植物净化PM2.5的影响机制。得出宏观研究方面很多城市缺乏植被区与非植被区PM2.5浓度监测数据,微观方面植物个体吸滞PM2.5机理研究不够深入,缺乏植物吸滞PM2.5过程与机理的室内模拟外界环境的高精度对比试验,更缺乏环境因素直接影响植物吸收、分...  相似文献   

16.
金自恒  高锡章  李宝林  翟德超  许杰  李飞 《生态学报》2022,42(11):4379-4388
川渝地区尤其是四川盆地已成为我国空气污染最严重的地区之一,基于2018—2019年川渝地区128个城市站和71个县级站空气质量监测及自然与社会经济数据,采用全局和局部莫兰指数分析了川渝地区空气质量指数(AQI)和不同空气质量分指数(IAQI)的时空格局,并采用偏最小二乘回归(PLSR)从较为宏观的尺度综合分析了川渝地区空气污染的主要驱动因素。研究结果表明:(1)川渝地区空气质量整体为良,主要污染物为O3,其次为PM10和PM2.5。盆地区与高原区的主要污染物分别为PM2.5和O3;(2)AQI及PM2.5、PM10、NO2呈“U”型变化,春冬季最高,夏秋季最低;O3则在内部两区域都大致呈倒“U”型变化,但峰值分布时间与持续时长明显不同;SO2和CO年内无明显变化;(3)各污染物具有明显的空间聚集性特征,AQI及PM10、PM2.5  相似文献   

17.
Gao  Ke  Chen  Xi  Li  Xiaoying  Zhang  Hanxiyue  Luan  Mengxiao  Yao  Yuan  Xu  Yifan  Wang  Teng  Han  Yiqun  Xue  Tao  Wang  Junxia  Zheng  Mei  Qiu  Xinghua  Zhu  Tong 《中国科学:生命科学英文版》2022,65(2):387-397

Susceptibility of patients with chronic obstructive pulmonary disease (COPD) to cardiovascular autonomic dysfunction associated with exposure to metals in ambient fine particles (PM2.5, particulate matter with aerodynamic diameter ≤2.5 µm) remains poorly evidenced. Based on the COPDB (COPD in Beijing) panel study, we aimed to compare the associations of heart rate (HR, an indicator of cardiovascular autonomic function) and exposure to metals in PM2.5 between 53 patients with COPD and 82 healthy controls by using linear mixed-effects models. In all participants, the HR levels were significantly associated with interquartile range increases in the average concentrations of Cr, Zn, and Pb, but the strength of the associations differed by exposure time (from 1.4% for an average 9 days (d) Cr exposure to 3.5% for an average 9 d Zn exposure). HR was positively associated with the average concentrations of PM2.5 and certain metals only in patients with COPD. Associations between HR and exposure to PM2.5, K, Cr, Mn, Ni, Cu, Zn, As, and Se in patients with COPD significantly differed from those in health controls. Furthermore, association between HR and Cr exposure was robust in COPD patients. In conclusion, our findings indicate that COPD could exacerbate difference in HR following exposure to metals in PM2.5.

  相似文献   

18.
细颗粒物(PM2.5)污染不仅是现代社会城市化进程中的痛点,也是城市大气环境研究不可忽略的重要焦点。粤港澳大湾区作为世界级城市群,既是城市区域经济社会文化发展的重要体现,更是国家区域发展战略的重要构成与政策实施落脚点,其生态环境的优劣尤其受瞩目。对1999-2016年大湾区地表PM2.5浓度栅格数据集进行了时空分布特征分析,其中空间自相关分析选取莫兰指数(Moran''I指数)作为度量;并利用多元线性回归模型探讨研究区内PM2.5与气象要素之间关系。结果表明:粤港澳大湾区1999-2016年历年PM2.5浓度呈先增加后减小的趋势,2008年为时间拐点,该时间节点之后空气质量显著提高,且1999、2009、2016三年,年平均PM2.5浓度相似值趋于聚集分布。冷热点分析结果表明:热点区域集中于湾区行政核心区域范围内;冷点集中于核心边缘区域,空气质量较优。利用皮尔森相关分析最终筛选出实际蒸散量(aet)、太阳辐射(srad)、最低温度(tmmn)、蒸汽压(vap)、饱和水汽压差(vpd)、风速(ws)等6个气象因子,利用回归分析判断影响PM2.5浓度时空分布的显著因子。结果表明:本研究区太阳辐射与PM2.5浓度关系呈负相关,该结果与其他城市相关研究有较大差异,最小温度与PM2.5浓度呈正相关,风速与PM2.5浓度呈负相关,饱和水气压差与PM2.5浓度呈正相关。  相似文献   

19.
陈文波  谢涛  郑蕉  吴双 《生态学报》2020,40(19):7044-7053
我国当前城市日益频发的雾霾问题引发公众广泛关注,PM2.5被认为是雾霾的主要成因。研究认为,在某一区域短时间尺度上(如日),PM2.5浓度主要受气象条件影响。但在较长时间尺度上(如季,年),由于气象条件基本相似,则PM2.5浓度主要受土地利用特别是地表植被景观的影响。如何耦合地表植被景观格局与PM2.5浓度信息,定量分析其影响是当前相关科学研究的一个难点,需要引入新思路。首先基于季节气象条件基本相似的科学假设,采用土地利用回归模型分四季高精度模拟PM2.5浓度空间分布。其次,采用像元二分模型分四季估算研究区植被覆盖度。在此基础上采用随机抽样法通过统计回归模型耦合植被覆盖度与PM2.5空间分布,定量研究植被覆盖度对PM2.5分布影响及其尺度效应。研究结果表明:1)植被覆盖度与PM2.5浓度在本研究选择的空间尺度上,都显著负相关,说明植被覆盖度对PM2.5具有显著影响;同一个季节不同尺度上,以及不同季节同一尺度上的植被覆盖度对PM2.5浓度的影响存在一定差异。2)植被覆盖度对PM2.5浓度的影响方式比较复杂,不同的季节的表现方式不同,总体来说PM2.5浓度与植被覆盖度曲线回归模型的拟合度高于线性回归模型,说明植被覆盖度对PM2.5的影响具有非线性特征。3)不同的PM2.5浓度水平下,植被覆盖度对PM2.5浓度的影响程度存在差异。PM2.5浓度越高,植被覆盖度对其浓度的影响越明显。本研究提出的区域尺度耦合地表植被覆盖与PM2.5浓度的思路与方法,有效的揭示了植被覆盖度对PM2.5浓度分布的影响方式与尺度效应,为通过优化城市植被缓解大气污染提供一定参考。  相似文献   

20.
PM2.5 emissions not only have serious adverse health effects, but also impede transportation activities, especially in air and highway transport. As a result, PM2.5 emissions have become a public policy concern in China in recent years. Currently, the vast majority of existing researches on PM2.5 are based on natural science perspective. Very few economic studies on the subject have been conducted with linear models. This paper adopts provincial panel data from 2001 to 2012, and uses the STIRPAT model and nonparametric additive regression models to examine the key driving forces of PM2.5 emissions in China. The results show that the nonlinear effect of economic growth on PM2.5 emissions is consistent with the Environmental Kuznets Curve (EKC) hypothesis. The nonlinear impact of urbanization exhibits an inverted “U-shaped” pattern due to the rapid development of urban real estate in the early stages and the strengthening of environmental protection measures in the latter stage. Coal consumption follows an inverted “U-shaped” relationship with PM2.5 emissions owing to massive coal consumption at the beginning and efforts to optimize the energy structure as well as technological progress in clean energy in the latter stages. The nonlinear inverted “U-shaped” impact of private vehicles may be due to the different roles of scale, structural and technical effects at different stages. However, energy efficiency improvement follows a positive “U-shaped” pattern in relation to PM2.5 emissions because of differences in the scale of the economy and the speed of technological progress at different times. As a result, the differential dynamic effects of the driving forces of PM2.5 emissions at different times should be taken into consideration when initiating policies to reduce PM2.5 emissions in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号