首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacterioferritin was recently isolated from the anaerobic sulphate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 [Romão et al. (2000) Biochemistry 39, 6841–6849]. Although its properties are in general similar to those of the other bacterioferritins, it contains a haem quite distinct from the haem B, found in bacterioferritins from aerobic organisms. Using visible and NMR spectroscopies, as well as mass spectrometry analysis, the haem is now unambiguously identified as iron-coproporphyrin III, the first example of such a prosthetic group in a biological system. This unexpected finding is discussed in the framework of haem biosynthetic pathways in anaerobes and particularly in sulphate-reducing bacteria.  相似文献   

2.
Structural similarities between ferritins and bacterioferritins have been extensively demonstrated. However, there is an essential difference between these two types of ferritins: whereas bacterioferritins bind haem, in-vivo, as Fe(II)-protoporphyrin IX (this haem is located in a hydrophobic pocket along the 2-fold symmetry axes and is liganded by two axial Met 52 residues), eukaryotic ferritins are non-haem iron proteins. However, in in-vivo studies, a cofactor has been isolated from horse spleen apoferritin similar to protoporphyrin IX; in in-vitro experiments, it has been shown that horse spleen apoferritin is able to interact with haemin (Fe(III)-protoporphyrin IX). Studies of haemin incorporation into horse spleen apoferritin have been carried out, which show that the metal free porphyrin is found in a pocket similar to that which binds haem in bacterioferritins (Précigoux et al. 1994 Acta Cryst D50, 739–743). A mechanism of demetallation of haemin by L-chain apoferritins was subsequently proposed (Crichton et al. 1997 Biochem 36, 15049–15054) which involved four Glu residues (E 53,56,57,60) situated at the entrance of the hydrophobic pocket and appeared to be favoured by acidic conditions. To verify this mechanism, these four Glu have been mutated to Gln in recombinant horse L-chain apoferritin. We report here the EPR spectra of recombinant horse L-chain apoferritin and its mutant with haemin in basic and acidic conditions. These studies confirm the ability of recombinant L-chain apoferritin and its mutant to incorporate and demetallate the haemin in acidic and basic conditions.  相似文献   

3.
Emergence of tuberculosis as a global health threat has necessitated an urgent search for new antitubercular drugs entailing determination of 3-dimensional structures of a large number of mycobacterial proteins for structure-based drug design. The essential requirement of ferritins/bacterioferritins (proteins involved in iron storage and homeostasis) for the survival of several prokaryotic pathogens makes these proteins very attractive targets for structure determination and inhibitor design. Bacterioferritins (Bfrs) differ from ferritins in that they have additional noncovalently bound haem groups. The physiological role of haem in Bfrs is not very clear but studies indicate that the haem group is involved in mediating release of iron from Bfr by facilitating reduction of the iron core. To further enhance our understanding, we have determined the crystal structure of the selenomethionyl analog of bacterioferritin A (SeMet-BfrA) from Mycobacterium tuberculosis (Mtb). Unexpectedly, electron density observed in the crystals of SeMet-BfrA analogous to haem location in bacterioferritins, shows a demetallated and degraded product of haem. This unanticipated observation is a consequence of the altered spatial electronic environment around the axial ligands of haem (in lieu of Met52 modification to SeMet52). Furthermore, the structure of Mtb SeMet-BfrA displays a possible lost protein interaction with haem propionates due to formation of a salt bridge between Arg53-Glu57, which appears to be unique to Mtb BfrA, resulting in slight modulation of haem binding pocket in this organism. The crystal structure of Mtb SeMet-BfrA provides novel leads to physiological function of haem in Bfrs. If validated as a drug target, it may also serve as a scaffold for designing specific inhibitors. In addition, this study provides evidence against the general belief that a selenium derivative of a protein represents its true physiological native structure.  相似文献   

4.
An indirect fluorescent antibody technique was used as a method of rapidly assessing and identifying sulphate-reducing bacteria. Five specific antisera and one polyvalent serum were raised and tested against 44 strains of the genera Desulfovibrio and Desulfotomaculum along with 4 control organisms. Immunofluorescence was found to be mainly strain specific with the sulphate-reducing bacteria although weak fluorescence was seen both within and between recognised groups. A polyvalent antiserum was successfully used to detect sulphate-reducing bacteria. No interference from 4 control organisms was found.  相似文献   

5.
Phycoferritin from the nutritionally important blue-green alga Arthrospira platensis has been isolated, by application of conventional biochemical techniques. The molecular mass, yield, iron and total neutral carbohydrate contents of the purified protein were 470 kDa, 0.044 mg g−1 of Arthrospira, 1.4 and 20%, respectively. The iron content was much lower when compared to bacterial and mammalian ferritins. The P: Fe ratio of Arthrospira phycoferritin was 1: 3.5, a value akin to bacterioferritins. Native gel-electrophoresis revealed the presence of isoforms. Subunit analysis by SDS-PAGE and Western blotting showed a protein subunit with an apparent molecular mass of 18 kDa. Oligomeric forms of the protein subunit were also present. The phycoferritin exhibited cross-reactivity with anti-pea seed ferritin suggesting phylogenetic relationship with that of higher plants. Carbohydrate analysis of phycoferritin by GC-MS revealed the presence of sugars such as galactose, glucose and mannose similar to that of mammalian ferritins. Interestingly, the analysis also revealed sugars such as rhamnose, xylose and talose, which has not been reported in the structure of ferritins. Except for very low histidine content in phycoferritin, the rest of the amino acid composition resembled to ferritins of other species. UV-visible spectral analysis of the phycoferritin revealed the presence of haem groups, a property characteristic of bacterioferritins. The fluorescence intensity of phycoferritin was higher than equine spleen ferritin. Circular dichroic spectra revealed a lower degree of helicity.  相似文献   

6.
An essential difference between eukaryotic ferritins and bacterioferritins is that the latter contain naturally, in vivo haem as Fe-protoporphyrin IX. This haem is located in a hydrophobic pocket along the 2-fold symmetry axes and is liganded by two Met 52. However, in in vivo studies, a cofactor has been isolated in horse spleen apoferritin similar to protoporphyrin IX; in in vitro experiments, it has been shown that horse spleen apoferritin is able to interact with haem. Studies of haemin (Fe(III)-PPIX) incorporation into horse spleen apoferritin have been carried out, which show that the metal free porphyrin is found in a corresponding pocket to haem in bacterioferritins [Précigoux, G., Yariv, J., Gallois, B., Dautant, A., Courseille, C. and Langlois, d'Estaintot B. (1994) A crystallographic study of haem binding to ferritin. Acta Cryst. D 50, 739-743]. A mechanism of demetallation of haemin by L-chain apoferritin was proposed [Crichton, R.R., Soruco, J.A., Roland, F., Michaux, M.A., Gallois, B., Précigoux, G., Mahy, J.P. and Mansuy. (1997) Remarkable ability of horse spleen apoferritin to demetallate hemin and to metallate protoporphyrin IX as a function of pH. J. P. Biochem. 36, 49, 15049-15054]: this involved four Glu residues (53,56,57,60) situated at the entrance of the hydrophobic pocket and appeared to be favoured by acidic conditions. To verify this mechanism, we have mutated these four Glu to Gln and examined demetallation in both acidic and basic conditions. In this paper, we report the mass spectrometry studies of L-chain apoferritin and its mutant incubated with haemin and analysed after different times of incubation: 15 days, 2 months, 6 months, 9 months and 12 months. These studies show that the recombinant L-chain apoferritin and its mutant are able to demetallate haemin to give a hydroxyethyl protoporphyrin IX derivative in a dimeric form [Macieira, S., Martins, B. M. and Huber, R. (2003) Oxygen-dependent coproporphyrinogen IX oxidase from Escherichia coli: one-step purification and biochemical characterization. FEMS. Microbiology Letters 226, 31-37].  相似文献   

7.
A sulphate-reducing consortium used in a bioprocess to remove toxic metals from solution as insoluble sulphides, was characterised using molecular (PCR-based) and traditional culturing techniques. After prolonged cultivation under anoxic biofilm-forming conditions, the mixed culture contained a low diversity of sulphate-reducing bacteria, dominated by one strain closely related to Desulfomicrobium norvegicum, identified by three independent PCR-based analyses. The genetic targets used were the 16S rRNA gene, the 16S-23S rRNA gene intergenic spacer region and the disulfite reductase (dsr) gene, which is conserved amongst all known sulphate-reducing bacteria. This organism was also isolated by conventional anaerobic techniques, confirming its presence in the mixed culture. A surprising diversity of other non-sulphate-reducing facultative and obligate anaerobes were detected, supporting a model of the symbiotic/commensal nature of carbon and energy fluxes in such a mixed culture while suggesting the physiological capacity for a wide range of biotransformations by this stable microbial consortium.  相似文献   

8.
The crystal structures of the oxidized and reduced forms of cytochrome c″ from Methylophilus methylotrophus were solved from X-ray synchrotron data to atomic resolution. The overall fold of the molecule in the two redox states is very similar and is comparable to that of the oxygen-binding protein from the purple phototrophic bacterium Rhodobacter sphaeroides. However, significant modifications occur near the haem group, in particular the detachment from axial binding of His95 observed upon reduction as well as the adoption of different conformations of some protonatable residues that form a possible proton path from the haem pocket to the protein surface. These changes are associated with the previously well characterized redox-Bohr behaviour of this protein. Furthermore they provide a model for one of the presently proposed mechanisms of proton translocation in the much more complex protein cytochrome c oxidase.  相似文献   

9.
Summary A survey was made of various visible light absorption spectra of whole cells, particulate and soluble fractions and haem extracts of representative strains of all known species of sulphate-reducing bacteria. The previously accepted distinction that Desulfovibrio species contain only a c-type cytochrome whereas Desulfotomaculum species contain only a b-type cytochrome was not confirmed. The pigment contents of the genera Desulfovibrio and Desulfotomaculum were not completely distinct from each other, but both genera had characteristic spectral patterns. Reduced minus oxidized spectra of whole cells and particulate fractions showed the presence of b-type cytochromes in all Desulfotomaculum species and in Desulfovibrio africanus. However, protohaem, the prosthetic group of b-type cytochromes, occurred in haem extracts from all species, although only just detectable in the extract from Desulfovibrio vulgaris NCIB 8303. Particulate c-type cytochromes were found in Desulfotomaculum orientis, Desulfotomaculum nigrificans and all the Desulfovibrio species, but the amount in Desulfotomaculum nigrificans was very small. Only the Desulfovibrio species contained soluble c-type cytochromes. Spectral properties indicated that a d-type cytochrome might exist in species in addition to Desulfovibrio africanus, but no supporting evidence was obtained from results of haem extractions. Some spectra contained peaks which could not be identified.  相似文献   

10.
Bacterioferritins, also known as cytochrome b (1), are oligomeric iron-storage proteins consisting of 24 identical amino acid chains, which form spherical particles consisting of 24 subunits and exhibiting 432 point-group symmetry. They contain one haem b molecule at the interface between two subunits and a di-nuclear metal binding center. The X-ray structure of bacterioferritin from Mycobacterium smegmatis (Ms-Bfr) was determined to a resolution of 2.7 A in the monoclinic space group C2. The asymmetric unit of the crystals contains 12 protein molecules: five dimers and two half-dimers located along the crystallographic twofold axis. Unexpectedly, the di-nuclear metal binding center contains zinc ions instead of the typically observed iron ions in other bacterioferritins.  相似文献   

11.
Biological sulphate reduction using food industry wastes as carbon sources   总被引:1,自引:0,他引:1  
Biological treatment with dissimilatory sulphate-reducing bacteria has been considered the most promising alternative for decontamination of sulphate rich effluents. These wastewaters are usually deficient in electron donors and require their external addition to achieve complete sulphate reduction. The aim of the present study was to investigate the possibility of using food industry wastes (a waste from the wine industry and cheese whey) as carbon sources for dissimilatory sulphate-reducing bacteria. The results show that these wastes can be efficiently used by these bacteria provided that calcite tailing is present as a neutralizing and buffer material. A 95 and 50 % sulphate reduction was achieved within 20 days of experiment by a consortium of dissimilatory sulphate-reducing bacteria grown on media containing waste from the wine industry or cheese whey respectively. Identification of the dissimilatory sulphate-reducing bacteria community using the dsr gene revealed the presence of the species Desulfovibrio fructosovorans, Desulfovibrio aminophilus and Desulfovibrio desulfuricans. The findings of the present study emphasise the potential of using wastes from the wine industry as carbon source for dissimilatory sulphate-reducing bacteria, combined with calcite tailing, in the development of cost effective and environmentally friendly bioremediation processes.  相似文献   

12.
Carrondo MA 《The EMBO journal》2003,22(9):1959-1968
Ferritins constitute a broad superfamily of iron storage proteins, widespread in all domains of life, in aerobic or anaerobic organisms. Ferritins isolated from bacteria may be haem-free or contain a haem. In the latter case they are called bacterioferritins. The primary function of ferritins inside cells is to store iron in the ferric form. A secondary function may be detoxification of iron or protection against O(2) and its radical products. Indeed, for bacterioferritins this is likely to be their primary function. Ferritins and bacteroferritins have essentially the same architecture, assembling in a 24mer cluster to form a hollow, roughly spherical construction. In this review, special emphasis is given to the structure of the ferroxidase centres with native iron-containing sites, since oxidation of ferrous iron by molecular oxygen takes place in these sites. Although present in other ferritins, a specific entry route for iron, coupled with the ferroxidase reaction, has been proposed and described in some structural studies. Electrostatic calculations on a few selected proteins indicate further ion channels assumed to be an entry route in the later mineralization processes of core formation.  相似文献   

13.
Abstract The nucleotide sequence of the Rhodobacter capsulatus bacterioferritin gene ( bfr ) was determined and found to encode a protein of 161 amino acids with a predicted molecular mass of 18 174 Da. The molecular mass of the purified protein was estimated to be 18 176.06 ± 0.80 Da by electrospray mass spectrometry. The bfr gene was introduced into an expression vector, and bacterioferritin was produced to a high level in Escherichia coli . The amino acids which are involved in haem ligation, and those which provide ligands in the binuclear metal centre in bacterioferritin from E. coli are conserved in the R. capsulatus protein. The sequences of bacterioferritins, ferritin-like proteins, and proteins similar to Dps of E. coli are compared, and membership of the bacterioferritin family re-evaluated.  相似文献   

14.
A ferritin was isolated from the obligate anaerobe Bacteroides fragilis. Estimated molecular masses were 400 kDa for the holomer and 16.7 kDa for the subunits. A 30-residue N-terminal amino acid sequence was determined and found to resemble the sequences of other ferritins (human H-chain ferritin, 43% identity; Escherichia coli gen-165 product, 37% identity) and to a lesser degree, bacterioferritins (E. coli bacterioferritin, 20% identity). The protein stained positively for iron, and incorporated 59Fe when B. fragilis was grown in the presence of [59Fe]citrate. However, the isolated protein contained only about three iron atoms per molecule, and contained no detectable haem. This represents the first isolation of a ferritin protein from bacteria. It may alleviate iron toxicity in the presence of oxygen.  相似文献   

15.
Lactococcus lactis is a fermenting Gram‐positive bacterium widely used for production of dairy products. Lacking haem biosynthesis genes, L. lactis can still shift to an energetically favourable respiratory metabolism by activating a terminal cytochrome bd oxidase when haem is added to an aerated culture. Haem intracellular homeostasis is mediated by the hrtRBA operon encoding the conserved membrane HrtBA haem efflux permease and the unique intracellular haem sensor and regulator, HrtR. Here we report that membrane‐associated menaquinones (MK) favour the accumulation of reduced haem in membranes. An oxidative environment, provided by oxygen, prevents and reverses haemin reduction by MK and thus limits haem accumulation in membranes. HrtBA counteracts MK‐dependent membrane retention of excess haem in membrane, suggesting direct efflux from this compartment. Moreover, both HrtBA and MK‐mediated reduction have a strong impact on haem intracellular pools, as determined via HrtR haem sensor induction, suggesting that intracellular haem acquisition is controlled at the membrane level without the need for dedicated import systems. Our conclusions lead to a new hypothesis of haem acquisition and regulation in which HrtBA and the bacterial membrane have central roles in L. lactis.  相似文献   

16.
The structure of the cytochrome c′ from the purple non-sulfur phototrophic bacterium Rubrivivax gelatinosus was determined using two crystals grown independently at pH 6.3 and pH 8. The resolution attained for the two structures (1.29 Å and 1.50 Å for the crystals at high and low pH, respectively) is the highest to date for this class of proteins. The two structures were compared in detail in an attempt to investigate the influence of pH on the geometry of the haem and of the coordination environment of the Fe(III) ion. However, while the results suggest some small propensity for the movement of the metal atom out of the plane of the haem ring upon pH increase, the accuracy of the measurements at these two pH below the pK of the axial histidine is not sufficient to provide hard evidence of a shift in the iron position and associated changes.  相似文献   

17.
Enzymatic haem catabolism by haem oxygenases is conserved from bacteria to humans and proceeds through a common mechanism leading to the formation of iron, carbon monoxide and biliverdin. The first members of a novel class of haem oxygenases were recently identified in Staphylococcus aureus (IsdG and IsdI) and were termed the IsdG‐family of haem oxygenases. Enzymes of the IsdG‐family form tertiary structures distinct from those of the canonical haem oxygenase family, suggesting that IsdG‐family members degrade haem via a unique reaction mechanism. Herein we report that the IsdG‐family of haem oxygenases degrade haem to the oxo‐bilirubin chromophore staphylobilin. We also present the crystal structure of haem‐bound IsdI in which haem ruffling and constrained binding of oxygen is consistent with cleavage of the porphyrin ring at the β‐ or δ‐meso carbons. Combined, these data establish that the IsdG‐family of haem oxygenases degrades haem to a novel chromophore distinct from biliverdin.  相似文献   

18.
Bacillus subtilis CtaA and CtaB function in haem A biosynthesis   总被引:7,自引:1,他引:6  
Haem A, a prosthetic group of many respiratory oxidases, is probably synthesized from haem B (protohaem IX) in a pathway in which haem O is an intermediate. Possible roles of the Bacillus subtilis ctaA and CtaB gene products in haem O and haem A synthesis were studied. Escherichia coli does not contain haem A. The CtaA gene on plasmids in E. coli resulted in haem A accumulation in membranes. The presence of CtaB together with ctaA increased the amount of haem A found in E. coli. Haem O was not detected in wild-type B. subtilis strains. A previously isolated B. subtilis CtaA deletion mutant was found to contain haem B and haem O, but not haem A. B. subtilis ctaB deletion mutants were constructed and found to tack both haem A and haem O. The results with E. coli and B. subtilis strongly suggest that the B. subtilis CtaA protein functions in haem A synthesis. It is tentatively suggested that it functions in the oxygeNatlon/oxidation of the methyl side group of carbon 8 of haem O. B. subtilis CtaB, which is homologous to Saccharomyces cerevisiae COX10 and E. coli CyoE, also has a role in haem A synthesis and seems to be required for both cytochrome a and cytochrome o synthesis.  相似文献   

19.
Sulphate-reducing bacteria (SRB) in the thermal springs of Vajreshwari were investigated with combined microbiological and molecular approaches. A sulphate-reducing bacteria medium containing lactate was used for enrichment and isolation, which yielded Gram negative, rod shaped, anaerobic, non-spore forming and motile bacteria capable of reducing sulphate to sulphide. These grew at temperatures ranging from 25 to 55 °C and could use pyruvate, lactate and ethanol as electron donors. Desulfoviridin was detected in all the isolates. The partial 16S rRNA and dissimilatory sulphite reductase (DSR) gene sequences of five representative isolates revealed that the strains belonged to the sulphur reducing bacterial species Desulfovibrio vulgaris.  相似文献   

20.
Summary Hydrogen is consumed by methanogenic, sulphate-reducing, and homoacetogenic bacteria and members of these bacterial groups are able to grow chemolithotrophically with hydrogen as sole energy source. Cathodic hydrogen consumption by sulphate-reducing bacteria has been proposed as one of the factors in the anaerobic corrosion of metals. Desulfovibrio spp. were able to utilize cathodic hydrogen from mild steel as the only source of energy for growth with sulphate or nitrate as terminal electron acceptor. Other hydrogen-oxidizing bacteria such as Methanospirillum hungatei, Acetobacterium woodii and Wolinella succinogenes were also able to utilize cathodic hydrogen from mild steel for energy generation and growth. Weight loss studies of mild steel coupons under different growth conditions of Desulfovibrio spp. indicated that hydrogen removal alone is not the cause of corrosion and the depolarization phenomenon probably plays a role only in the initiation of the anaerobic microbial corrosion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号