首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmid aggregate (R387, R64) was constructed in E. coli K12 strain. Plasmid R387 Inc K was stimulated to conjugational transfer by plasmid R64 Inc I. This stimulation was caused neither by recombination between both plasmids nor by trans-complementation of R387 conjugational systems by gene(s) product(s) of R64 plasmid. The observed phenomenon resembled rather mobilization of nonconjugative plasmids by conjugative ones. As in mobilization, the observed increase in R387 transfer frequency could take place only when both interacting plasmids were present in donor cells. Moreover, the entry exclusion system functioning in recipient cells, toward stimulating R64 plasmid affected strongly the conjugational transfer of stimulated R387 plasmid. Analogous phenomenon was observed during mobilization of nonconjugative plasmids by conjugative ones.  相似文献   

2.
Location of the antigenic determinants of conjugative F-like pili   总被引:4,自引:3,他引:1       下载免费PDF全文
The amino terminus of the pilin protein constitutes the major epitope of F-like conjugative pili studied to date (F, ColB2, R1-19, R100-1, and pED208). Anti-pED208 pilus antibodies were passed through a CNBr-Sepharose affinity column linked to bovine serum albumin which was conjugated to a synthetic peptide, AcP(1-12), containing the major epitope at the amino terminus of pED208 pilin. This allowed the separation of two classes of antibodies; one was specific for the amino terminus and bound to the column, while the other, which recognizes a second epitope on the pilus, did not bind to the column. In addition, antibodies were raised against two amino-terminal peptide-bovine serum albumin conjugates [AcP(1-8) and AcP(1-12)] to ensure a source of pure, high-titer antibodies directed against the amino terminus. The location of these antibodies on intact pili was assayed by immunoelectron microscopy with a protein A-gold technique. The amino terminus-specific antibodies did not bind to the sides of the pili but appeared to be associated with the pilus tip. In addition, these antibodies were found to bind to the vesicle-like structure at the base of the pilus. The anti-pilus antibodies not specific for the amino terminus (unbound immunoglobulin G) were found to bind to the sides of the pilus. Anti-F and anti-ColB2 pilus antibodies bound to the sides of F, ColB2, and R1-19 pili, which have only their secondary epitope in common. The carboxyl-terminal lysine of R1-19 pilin prevents the absorption of anti-F plus antiserum but not anti-ColB2 pilus antiserum to the sides of the pilus, presumably by interfering with the recognition of this secondary epitope.  相似文献   

3.
4.
5.
Actinomycete integrative and conjugative elements   总被引:1,自引:0,他引:1  
This paper reviews current knowledge on actinomycete integrative and conjugative elements (AICEs). The best characterised AICEs, pSAM2 of Streptomyces ambofaciens (10.9 kb), SLP1 (17.3 kb) of Streptomyces coelicolor and pMEA300 of Amycolatopsis methanolica (13.3 kb), are present as integrative elements in specific tRNA genes, and are capable of conjugative transfer. These AICEs have a highly conserved structural organisation, with functional modules for excision/integration, replication, conjugative transfer, and regulation. Recently, it has been shown that pMEA300 and the related elements pMEA100 of Amycolatopsis mediterranei and pSE211 of Saccharopolyspora erythraea form a novel group of AICEs, the pMEA-elements, based on the unique characteristics of their replication initiator protein RepAM. Evaluation of a large collection of Amycolatopsis isolates has allowed identification of multiple pMEA-like elements. Our data show that, as AICEs, they mainly coevolved with their natural host in an integrated form, rather than being dispersed via horizontal gene transfer. The pMEA-like elements could be separated into two distinct populations from different geographical origins. One group was most closely related to pMEA300 and was found in isolates from Australia and Asia and pMEA100-related sequences were present in European isolates. Genome sequence data have enormously contributed to the recent insight that AICEs are present in many actinomycete genera. The sequence data also provide more insight into their evolutionary relationships, revealing their modular composition and their likely combined descent from bacterial plasmids and bacteriophages. Evidence is accumulating that AICEs act as modulators of host genome diversity and are also involved in the acquisition of secondary metabolite clusters and foreign DNA via horizontal gene transfer. Although still speculative, these AICEs may play a role in the spread of antibiotic resistance factors into pathogenic bacteria. The novel insights on AICE characteristics presented in this review may be used for the effective construction of new vectors that allows us to engineer and optimise strains for the production of commercially and medically interesting secondary metabolites, and bioactive proteins.  相似文献   

6.
Characterization of the F-plasmid conjugative transfer gene traU.   总被引:5,自引:4,他引:1       下载免费PDF全文
We characterized the traU gene of the Escherichia coli K-12 conjugative plasmid F. Plasmids carrying segments of the F transfer operon were tested for their capacity to complement F lac traU526. The protein products of TraU+ clones were identified, and the nucleotide sequence of traU was determined. traU mapped between traW and trbC. It encodes a 330-amino-acid, Mr36,786 polypeptide that is processed. Ethanol caused accumulation of a precursor polypeptide; removal of ethanol permitted processing of the protein to occur. Because F lac traU526 strains appear to be resistant to F-pilus-specific phages, traU has been considered an F-pilus assembly gene. However, electron microscopic analysis indicated that the traU526 amber mutation caused only a 50% reduction in F-piliation. Since F lac traU526 strains also retain considerable transfer proficiency, new traU mutations were constructed by replacing a segment of traU with a kanamycin resistance gene. Introduction of these mutations into a transfer-proficient plasmid caused a drastic reduction in transfer proficiency, but pilus filaments remained visible at approximately 20% of the wild-type frequency. Like traU526 strains, such mutants were unable to plaque F-pilus-specific phages but exhibited a slight sensitivity on spot tests. Complementation with a TraU+ plasmid restored the wild-type transfer and phage sensitivity phenotypes. Thus, an intact traU product appears to be more essential to conjugal DNA transfer than to assembly of pilus filaments.  相似文献   

7.
Physical analysis of the conjugative shuttle transposon Tn1545   总被引:12,自引:0,他引:12  
  相似文献   

8.
9.
A conjugative 'plasmid' lacking autonomous replication   总被引:3,自引:0,他引:3  
Attempts were made to isolate open and covalently closed circular DNA from strains containing the IncJ plasmids. All of the methods tried were unsuccessful. It was shown that the IncJ plasmid R391 can integrate into the Escherichia coli K12 chromosome and can mobilize chromosomal markers from a single origin in an orientated manner. It is proposed that the IncJ plasmids are integrated in the chromosome for most, if not all, of their existence and this explains the inability to isolate plasmid DNA from strains containing them.  相似文献   

10.
Characterization of conjugative plasmid EDP208.   总被引:6,自引:4,他引:2       下载免费PDF全文
EDP208 is a conjugative plasmid belonging to incompatibility group IncF0 lac, A restriction endonuclease map of this plasmid was constructed using five restriction enzymes: BamHI, HindIII, PvuI, SstI, and XhoI. On the basis of these mapping studies, the plasmid was found to be 90 kilobases in length. Clones were constructed from four large HindIII fragments of plasmid EDP208. One fragment, HindIII-20.5, was found to contain the lac genes and the origin of vegetative replication (oriV). Another fragment, HindIII-27.5, was found to contain all of the genes necessary for sex pilus formation, but it was nontransmissible. However, when used to complement a plasmid carrying an adjacent fragment, HindIII-23, the transfer of the latter occurred, suggesting that HindIII-23 contains the origin of transfer (oriT). The further localization of genes concerned with pilus biosynthesis was achieved by transposon mutagenesis. Six EDP208::Tn1 and thirty-seven EDP208::Tn5 mutants were isolated on the basis of their resistance to f1, a filamentous phage which adheres to intact pilus tips. The positions of the inserted transposons were determined on the restriction map and a 16.5-kilobase region was found to be required for pilus synthesis.  相似文献   

11.
12.
In Lactococcus lactis excision of Tn916 is limited by the concentration of integrase and is increased by providing more excisionase. However, even with increased excision of Tn916 in L. lactis, no conjugative transfer is detectable. This suggests that L. lactis is deficient in a host factor(s) required for conjugative transposition.  相似文献   

13.
Genetic organization of the bacterial conjugative transposon Tn916.   总被引:40,自引:18,他引:22       下载免费PDF全文
Tn916, which encodes resistance to tetracycline, is a 16.4-kilobase conjugative transposon originally identified on the chromosome of Streptococcus faecalis DS16. The transposon has been cloned in Escherichia coli on plasmid vectors, where it expresses tetracycline resistance; it can be reintroduced into S. faecalis via protoplast transformation. We have used a lambda::Tn5 bacteriophage delivery system to introduce Tn5 into numerous sites within Tn916. The Tn5 insertions had various effects on the behavior of Tn916. Some insertions eliminated conjugative transposition but not intracellular transposition, and others eliminated an excision step believed to be essential for both types of transposition. A few inserts had no effect on transposon behavior. Functions were mapped to specific regions on the transposon.  相似文献   

14.
Morphological and serological relationships of conjugative pili   总被引:23,自引:1,他引:23  
D E Bradley 《Plasmid》1980,4(2):155-169
It is now known that conjugative pili are determined by representative plasmids for all incompatibility groups in Escherichia coli K-12. They fall into three basic morphological groups, which are described: thin flexible, thick flexible, and rigid filaments or rods. The main thrust of this study, however, has been the use of immune electron microscopy to survey pili of all established incompatibility groups for serological cross-reactions. Morphologically identical thin flexible pili were determined by plasmids of the I complex, as well as IncB and IncK. Immune electron microscopy revealed two unrelated serotypes typified by Ia and I2 pili; K and B pili belonged to the first serotype. Thick flexible pili were determined by plasmids of Inc groups C, D, the F complex, H1, H2, J, T, V, X, com9, the single plasmid F0 lac, and the unclassified plasmid R687. Serological tests showed that C pili were related to J pili, H1 pili to H2 pili, com9 pili to F0 lac pili, and R687 pili to D pili, the remainder being unrelated. Rigid pili were determined by plasmids of Inc groups M, N, P, W, and by the unclassified plasmids R775, RA3, and pAr-32. The only relationship detected was between RA3 and pAr-32 pili. No cross reactions were found between pili of the three different morphological groups.  相似文献   

15.
Type IV secretory systems are a group of bacterial transporters responsible for the transport of proteins and nucleic acids directly into recipient cells. Such systems play key roles in the virulence of some pathogenic organisms and in conjugation-mediated horizontal gene transfer. Many type IV systems require conserved "coupling proteins," transmembrane polypeptides that are critical for transporting secreted substrates across the cytoplasmic membrane of the bacterium. In vitro evidence suggests that the functional form of coupling proteins is a homohexameric, ring-shaped complex. Using a library of tagged mutants, we investigated the structural and functional organization of the F plasmid conjugative coupling protein TraD by coimmunoprecipitation, cross-linking, and genetic means. We present direct evidence that coupling proteins form stable oligomeric complexes in the membranes of bacteria and that the formation of some of these complexes requires other F-encoded functions. Our data also show that different regions of TraD play distinct roles in the oligomerization process. We postulate a model for in vivo oligomerization and discuss the probable participation of individual domains of TraD in each step.  相似文献   

16.
Sex and the single circle: conjugative transposition.   总被引:8,自引:2,他引:6  
  相似文献   

17.
A newly discovered Bacteroides conjugative transposon (CTn), CTnBST, integrates more site specifically than two other well-studied CTns, the Bacteroides CTn CTnDOT and the enterococcal CTn Tn916. Moreover, the integrase of CTnBST, IntBST, had the C-terminal 6-amino-acid signature that is associated with the catalytic regions of members of the tyrosine recombinase family, most of which integrate site specifically. Also, in most of these integrases, all of the conserved amino acids are required for integration. In the case of IntBST, however, we found that changing three of the six conserved amino acids in the signature, one of which was the presumed catalytic tyrosine, resulted in a 1,000-fold decrease in integration frequency. Changes in the other amino acids had little or no effect. Thus, although the CTnBST integrase still seems to be a member of the tyrosine recombinase family, it clearly differs to some extent from other members of the family in its catalytic site. We also determined the sequence requirements for CTnBST integration in the 18-bp region where the crossover occurs preferentially during integration. We found that CTnBST integrates in this preferred site about one-half of the time but can also use other sites. A consensus sequence was tentatively derived by comparison of a few secondary sites: AATCTGNNAAAT. We report here that within the consensus region, no single base change affected the frequency of integration. However, 3 bp at one end of the consensus sequence (CTG) proved to be essential for integration into the preferred site. This sequence appeared to be at one end of a 7-bp crossover region, CTGNNAA. The other bases could vary without affecting either integration frequency or specificity. Thus, in contrast to well-studied site-specific recombinases which require homology throughout the crossover region, integration of CTnBST requires homology at one end of the crossover region but not at the other end.  相似文献   

18.
Summary The conjugative shuttle transposon Tn1545 from Streptococcus pneumoniae transposes in various gram-positive bacterial genera following self-transfer and in Escherichia coli after cloning. Analysis of the junction fragments and of the targets before insertion and after excision of the element by DNA hybridization and sequencing indicated that Tn1545 (1) is not flanked by terminal repeated sequences in either direct or opposite orientation, (2) is flanked, in an asymmetric fashion, by terminal variable base pairs, one at the left and three at the right of the element, (3) inserts in a target DNA consensus sequence, (4) does not generate duplication of the target DNA upon insertion, and (5) excises precisely.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号