首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of tyramine, serotonin and benzalkonium on the esterase and aryl acylamidase activities of wild-type human butyrylcholinesterase and its peripheral anionic site mutant, D70G, were investigated. The kinetic study was carried out under steady-state conditions with neutral and positively charged aryl acylamides [o-nitrophenylacetanilide, o-nitrotrifluorophenylacetanilide and m-(acetamido) N,N,N-trimethylanilinium] and homologous esters (o-nitrophenyl acetate and acetylthiocholine). Tyramine was an activator of hydrolysis for neutral substrates and an inhibitor of hydrolysis for positively charged substrates. The affinity of D70G for tyramine was lower than that of the wild-type enzyme. Tyramine activation of hydrolysis for neutral substrates by D70G was linear. Tyramine was found to be a pure competitive inhibitor of hydrolysis for positively charged substrates with both wild-type butyrylcholinesterase and D70G. Serotonin inhibited both esterase and aryl acylamidase activities for both positively charged and neutral substrates. Inhibition of wild-type butyrylcholinesterase was hyperbolic (i.e. partial) with neutral substrates and linear with positively charged substrates. Inhibition of D70G was linear with all substrates. A comparison of the effects of tyramine and serotonin on D70G versus the wild-type enzyme indicated that: (a) the peripheral anionic site is involved in the nonlinear activation and inhibition of the wild-type enzyme; and (b) in the presence of charged substrates, the ligand does not bind to the peripheral anionic site, so that ligand effects are linear, reflecting their sole interaction with the active site binding locus. Benzalkonium acted as an activator at low concentrations with neutral substrates. High concentrations of benzalkonium caused parabolic inhibition of the activity with neutral substrates for both wild-type butyrylcholinesterase and D70G, suggesting multiple binding sites. Benzalkonium caused linear, noncompetitive inhibition of the positively charged aryl acetanilide m-(acetamido) N,N,N-trimethylanilinium for D70G, and an unusual mixed-type inhibition/activation (alpha > beta > 1) for wild-type butyrylcholinesterase with this substrate. No fundamental difference was observed between the effects of ligands on the butyrylcholinesterase-catalysed hydrolysis of esters and amides. Thus, butyrylcholinesterase uses the same machinery, i.e. the catalytic triad S198/H448/E325, for the hydrolysis of both types of substrate. The differences in response to ligand binding depend on whether the substrates are neutral or positively charged, i.e. the differences depend on the function of the peripheral site in wild-type butyrylcholinesterase, or the absence of its function in the D70G mutant. The complex inhibition/activation effects of effectors, depending on the integrity of the peripheral anionic site, reflect the allosteric 'cross-talk' between the peripheral anionic site and the catalytic centre.  相似文献   

2.
Zhan CG  Gao D 《Biophysical journal》2005,89(6):3863-3872
The geometries of the transition states, intermediates, and prereactive enzyme-substrate complex and the corresponding energy barriers have been determined by performing hybrid quantum mechanical/molecular mechanical (QM/MM) calculations on butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)- and (+)-cocaine. The energy barriers were evaluated by performing QM/MM calculations with the QM method at the MP2/6-31+G* level and the MM method using the AMBER force field. These calculations allow us to account for the protein environmental effects on the transition states and energy barriers of these enzymatic reactions, showing remarkable effects of the protein environment on intermolecular hydrogen bonding (with an oxyanion hole), which is crucial for the transition state stabilization and, therefore, on the energy barriers. The calculated energy barriers are consistent with available experimental kinetic data. The highest barrier calculated for BChE-catalyzed hydrolysis of (-)- and (+)-cocaine is associated with the third reaction step, but the energy barrier calculated for the first step is close to the highest and is so sensitive to the protein environment that the first reaction step can be rate determining for (-)-cocaine hydrolysis catalyzed by a BChE mutant. The computational results provide valuable insights into future design of BChE mutants with a higher catalytic activity for (-)-cocaine.  相似文献   

3.
Chen X  Fang L  Liu J  Zhan CG 《Biochemistry》2012,51(6):1297-1305
The catalytic mechanism for butyrylcholineserase (BChE)-catalyzed hydrolysis of acetylthiocholine (ATCh) has been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical-free energy (QM/MM-FE) calculations on both acylation and deacylation of BChE. Additional quantum mechanical (QM) calculations have been carried out, along with the QM/MM-FE calculations, to understand the known substrate activation effect on the enzymatic hydrolysis of ATCh. It has been shown that the acylation of BChE with ATCh consists of two reaction steps including the nucleophilic attack on the carbonyl carbon of ATCh and the dissociation of thiocholine ester. The deacylation stage includes nucleophilic attack of a water molecule on the carboxyl carbon of substrate and dissociation between the carboxyl carbon of substrate and hydroxyl oxygen of Ser198 side chain. QM/MM-FE calculation results reveal that the acylation of BChE is rate-determining. It has also been demonstrated that an additional substrate molecule binding to the peripheral anionic site (PAS) of BChE is responsible for the substrate activation effect. In the presence of this additional substrate molecule at PAS, the calculated free energy barrier for the acylation stage (rate-determining step) is decreased by ~1.7 kcal/mol. All of our computational predictions are consistent with available experimental kinetic data. The overall free energy barriers calculated for BChE-catalyzed hydrolysis of ATCh at regular hydrolysis phase and substrate activation phase are ~13.6 and ~11.9 kcal/mol, respectively, which are in reasonable agreement with the corresponding experimentally derived activation free energies of 14.0 kcal/mol (for regular hydrolysis phase) and 13.5 kcal/mol (for substrate activation phase).  相似文献   

4.
Pretreated wheat straw was enzymatically hydrolyzed in 250-ml flasks using the culture filtrate of Trichoderma reesei QM-9414. The influence of the initial enzymatic activity in the liquid phase was studied. The unreacted core model was used to analyze the experimental data obtained at 40, 46 and 50°C. The model adequately describes the data for hydrolysis times lower than 10 h.  相似文献   

5.
Heavy atom kinetic isotope effects (KIEs) were determined for the butyrylcholinesterase-catalyzed hydrolysis of formylthiocholine (FTC). The leaving-S, carbonyl-C, and carbonyl-O KIEs are 34k = 0.994 ± 0.004, 13k = 1.0148 ± 0.0007, and 18k = 0.999 ± 0.002, respectively. The observed KIEs support a mechanism for both acylation and deacylation where the steps up to and including the formation of the tetrahedral intermediate are at least partially rate determining. These results, in contrast to previous studies with acetylthiocholine, suggest that the decomposition of a tetrahedral intermediate is not rate-determining for FTC hydrolysis. Structural differences between the two substrates are likely responsible for the observed mechanism change with FTC.  相似文献   

6.
Enzymic hydrolysis by pancreatic phospholipase A (E.C. 3.1.1.4) of L-dioctanoyl-, L-didecanoyl- and L-didodecanoyllecithin monolayers was studied under constant surface pressure by measuring the amount of substrate which disappears per unit area per unit time. The reaction is first-order with respect to the total number of substrate molecules allowing the determination of a rate constant. Apparent limitations of the monolayer techniques are often caused by diffusion problems. Experimental conditions are discussed to detect and control these difficulties.  相似文献   

7.
Maleic acid-catalyzed hemicellulose hydrolysis reaction in corn stover was analyzed by kinetic modeling. Kinetic constants for Saeman and biphasic hydrolysis models were analyzed by an Arrhenius-type expansion which include activation energy and catalyst concentration factors. The activation energy for hemicellulose hydrolysis by maleic acid was determined to be 83.3 +/- 10.3 kJ/mol, which is significantly lower than the reported E(a) values for sulfuric acid catalyzed hemicellulose hydrolysis reaction. Model analysis suggest that increasing maleic acid concentrations from 0.05 to 0.2 M facilitate improvement in xylose yields from 40% to 85%, while the extent of improvement flattens to near-quantitative by increasing catalyst loading from 0.2 to 1 M. The model was confirmed for the hydrolysis of corn stover at 1 M maleic acid concentrations at 150 degrees C, resulting in a xylose yield of 96% of theoretical. The refined Saeman model was used to evaluate the optimal condition for monomeric xylose yield in the maleic acid-catalyzed reaction: low temperature reaction conditions were suggested, however, experimental results indicated that bi-phasic behavior dominated at low temperatures, which may be due to the insufficient removal of acetyl groups. A combination of experimental data and model analysis suggests that around 80-90% xylose yields can be achieved at reaction temperatures between 100 and 150 degrees C with 0.2 M maleic acid.  相似文献   

8.
The kinetics of glucoamylase-catalyzed hydrolysis of starch granules from six different botanical sources (rice, wheat, maize, cassava, sweet potato, and potato) was studied by the use of an electrochemical glucose sensor. A higher rate of hydrolysis was obtained as a smaller size of starch granules was used. The adsorbed amount of glucoamylase on the granule surface per unit area did not vary very much with the type of starch granules examined, while the catalytic constants of the adsorbed enzyme (k(0)) were determined to be 23.3+/-4.4, 14.8+/-6.0, 6.2+/-1.8, 7.1+/-4.1, 4.6+/-3.0, and 1.6+/-0.6 s(-1) for rice, wheat, maize, cassava, sweet potato, and potato respectively, showing that k(0) was largely influenced by the type of starch granules. A comparison of the k(0)-values in relation to the crystalline structure of the starch granules suggested that k(0) increases as the crystalline structure becomes dense.  相似文献   

9.
Computer analysis of experimental data published in 1-3 allowed to establish the presence of two non-interacting inequivalent hydrolytic sites in actomyosin molecule, one of them being specific for binding and hydrolysis of free ATP, the other--for MgATP. Thus both species of ATP are the substrates of actomyosin ATPase. Actomyosin molecule seems to bind on more (in additon to two active sites) substrate molecule (MgATP) at some non-catalytic regulatory site. The formation of the enzyme-substrate complex having three ATP molecules (one molecule of free ATP and two--of MgATP) is accompanied by the loss of the activity. An approach to the research of kinetic equations for complex systems considerably decreasing a number of variations to consider is given in this work.  相似文献   

10.
Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are enzymes that catalyse the hydrolysis of GTP bound to the small GTP-binding protein Arf. They have also been proposed to function as Arf effectors and oncogenes. We have set out to characterize the kinetics of the GAP-induced GTP hydrolysis using a truncated form of ASAP1 [Arf GAP with SH3 (Src homology 3) domain, ankyrin repeats and PH (pleckstrin homology) domains 1] as a model. We found that ASAP1 used Arf1-GTP as a substrate with a k(cat) of 57+/-5 s(-1) and a K(m) of 2.2+/-0.5 microM determined by steady-state kinetics and a kcat of 56+/-7 s(-1) determined by single-turnover kinetics. Tetrafluoroaluminate (AlF4-), which stabilizes complexes of other Ras family members with their cognate GAPs, also stabilized a complex of Arf1-GDP with ASAP1. As anticipated, mutation of Arg-497 to a lysine residue affected kcat to a much greater extent than K(m). Changing Trp-479, Iso-490, Arg-505, Leu-511 or Asp-512 was predicted, based on previous studies, to affect affinity for Arf1-GTP. Instead, these mutations primarily affected the k(cat). Mutants that lacked activity in vitro similarly lacked activity in an in vivo assay of ASAP1 function, the inhibition of dorsal ruffle formation. Our results support the conclusion that the Arf GAP ASAP1 functions in binary complex with Arf1-GTP to induce a transition state towards GTP hydrolysis. The results have led us to speculate that Arf1-GTP-ASAP1 undergoes a significant conformational change when transitioning from the ground to catalytically active state. The ramifications for the putative effector function of ASAP1 are discussed.  相似文献   

11.
A study was conducted on the kinetics of enzymatic hydrolysis of pure insoluble cellulose using unpurified culture filtrate Trichoderma reesei, with the emphasis on the initial reaction period. The initial hydrolysis rate and extent of enzyme (soluble protein)adsorption, either apparent or initial, were evaluated under various experimental conditions. It has been found that the various mass-transfer steps do not control the overall hydrolysis rate and that the hydrolysis rate is mainly controlled by the surface reaction step promoted by the adsorbed enzyme. It has also been found that the initial hydrolysis rate strongly depends on the initial extent of soluble protein adsorption and the effectiveness of the adsorbed soluble protein to promote the hydrolysis. The initial extent of soluble protein adsorption, in turn, is related to the initial cellulose concentration, enzyme concentration, and specific surface area of cellulose, whereas the effectiveness of the initially adsorbed soluble protein to promote the derived to interrelate these parameters without resorting to the Michaelis-Menten kinetics. The present result appear to imply that the role of enzyme-substrate complex formation should not be ignored in deriving a mechanistic kinetic model for enzymatic hydrolysis of cellulose.  相似文献   

12.
An amperometric biosensor for the detection of cellobiose has been introduced to study the kinetics of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase. By use of a sensor in which pyrroloquinoline quinone-dependent glucose dehydrogenase was immobilized on the surface of electrode, direct and continuous observation of the hydrolysis can be achieved even in a thick cellulose suspension. The steady-state rate of the hydrolysis increased with increasing concentrations of the enzyme to approach a saturation value and was proportional to the amount of the substrate. The experimental results can be explained well by the rate equations derived from a three-step mechanism consisting of the adsorption of the free enzyme onto the surface of the substrate, the reaction of the adsorbed enzyme with the substrate, and the liberation of the product. The catalytic constant of the adsorbed enzyme was determined to be 0.044+/-0.011s(-1).  相似文献   

13.
A dinuclear Zn(II) complex with hexaaza macrocyclic ligand bearing two 2-hydroxypropyl pendants, 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxypropyl)-tricyclo [22,2,2,2(11,14)]triaconta-11,13,24,26,27,29-hexane (L) was synthesized and studied as a catalyst of the cleavage of 4-nitrophenyl acetate (NA). X-ray diffraction analysis of [Zn(2)LCl(2)]Cl(2)(.)6H(2)O revealed that Zn(II) adopts a trigonal-bipyramidal geometry. The complexation constants of L with Zn(II) have been determined at 298 K by means of potentiometric titration. [Zn(2)H(-2)L](2+) is the dominant species in aqueous solution around pH 8. The Zn(2)L-promoted hydrolysis of NA showed a second-order rate constant of 0.33 M(-1)s(-1) at pH 9.0, and the main promoter species are concluded to be the deprotonated species [Zn(2)H(-2)L](2+).  相似文献   

14.
Kinetic study of sphingomyelin hydrolysis catalyzed by Clostridium perfringens phospholipase C was, at the first time, conducted for ceramide production. Ceramide has the major role in maintaining the water-retaining properties of the epidermis. Hence, it is of great commercial potential in cosmetic and pharmaceutical industries such as in hair and skin care products. The enzymatic hydrolysis of sphingomyelin has been proved to be a feasible method to produce ceramide. The kinetic performance of sphingomyelin hydrolysis in the optimal two-phase (water:organic solvent) reaction system was investigated to elucidate the possible reaction mechanism and also to further improve the hydrolysis performance. Enzyme in solution had less thermal stability than the enzyme powder and the immobilized enzyme. The thermal inactivation of phospholipase C in all the three forms did not follow the first order reaction at 65 °C. The reactions for both the soluble and immobilized enzymes followed Michaelis–Menten kinetics. Km's for the soluble and immobilized enzymes were 1.07 ± 0.32 and 1.26 ± 0.19 mM, respectively. The value of Vmax was markedly decreased by the immobilization without much change in Km, as if the immobilization functioned as the non-competitive inhibition. Ceramide as product activated the hydrolysis reaction, however, and its addition mainly caused the increase in the affinity of the enzyme–substrate complex.  相似文献   

15.
16.
Kinetic resolution of racemic alpha-methyl-beta-propiothiolactone (rac-MPTL) using lipases in organic solvent was studied. The lipase from Pseudomonas cepacia (PCL) showed the highest (S)-enantioselectivity (E > 100), and cyclohexane containing 1% (v/v) buffer was identified as the best reaction medium for maintaining high enantioselectivity as well as high reaction rate. While the substrate inhibition was not observed up to 300 mM rac-MPTL, severe product inhibition was observed even at 50 mM racemic 3-mercapto-alpha-methyl propionic acid (rac-MMPA), which made the use of high substrate concentration difficult. To overcome the product inhibition, the products, (R)-MMPA, were neutralized by addition of a dilute basic solution. Although the resolution reaction proceeded further by the base titration, the enantioselectivity of the reaction decreased as a result of nonenantioselective hydrolysis of rac-MPTL in the basic solution. Under these conditions, 200 mM rac-MPTL was successfully resolved to above 95% ee(S) with 53% conversion.  相似文献   

17.
The rate-limiting step for hydrolysis of the positively charged oxoester benzoylcholine (BzCh) by human butyrylcholinesterase (BuChE) is deacylation (k(3)), whereas it is acylation (k(2)) for hydrolysis of the homologous thioester benzoylthiocholine (BzSCh). Steady-state hydrolysis of BzCh and BzSCh by wild-type BuChE and its peripheral anionic site mutant D70G was investigated at different hydrostatic pressures, which allowed determination of volume changes associated with substrate binding, and the activation volumes for the chemical steps. A differential nonlinear pressure-dependence of the catalytic parameters for hydrolysis of both substrates by both enzymes was shown. Nonlinearity of the plots may be explained in terms of compressibility changes or rate-limiting changes. To distinguish between these two possibilities, enzyme phosphorylation by diisopropylfluorophosphate (DFP) in the presence of substrate (BzSCh) under pressure was studied. There was no pressure dependence of volume changes for DFP binding or for phosphorylation of either wild-type or D70G. Analysis of the pressure dependence for steady-state hydrolysis of substrates, and for phosphorylation by DFP provided evidence that no enzyme compressibility changes occurred during the catalyzed reactions. Thus, the nonlinear pressure dependence of substrate hydrolysis reflects changes in the rate-limiting step with pressure. Change in rate-determining step occurred at a pressure of 100 MPa for hydrolysis of BzCh by wild-type and at 75 MPa for D70G. For hydrolysis of BzSCh the change occurred at higher pressures because k(2) < k(3) at atmospheric pressure for this substrate. Elementary volume change contributions upon initial binding, productive binding, acylation and deacylation were calculated from the pressure differentiation of kinetic constants. This analysis shed light on the molecular events taking place along the hydrolysis pathways of BzCh and BzSCh by wild-type BuChE and the D70G mutant. In addition, volume change differences between wild-type and D70G provided new evidence that residue D70 in the peripheral site controls hydration of the active site gorge and the dynamics of the water molecule network during catalysis. Finally, a steady-state kinetic study of the oxyanion hole mutant (G117H) showed that substitution of the ethereal sulfur for oxygen in the substrate alters the final adjustment of substrate in the active site and stabilization of the acylation transition state.  相似文献   

18.
19.
The hydrolysis kinetics of steam-exploded wheat straw treated with cellulase NS 50013 enzyme complex in combination with β-glucosidase NS 50010 is studied. The time dependence of the reducing sugars amount is followed at varying the temperature value and the amount of the enzyme introduced. The activation energy determined on the ground of the rate temperature dependence stays unchanged in the course of the process. The preexponential factor decreases with the increase of the degree of hydrolysis and is responsible for the process rate decrease. A new expression for the dependence of degree of hydrolysis of one of carbohydrate polymers (cellulose) in wheat straw on the time, the enzyme concentration and the temperature is obtained. It is of practical importance as well because it provides estimation of the degree of hydrolysis required at predetermined values of the temperature, the enzyme concentration and the time used. The expression can be used for control of the enzyme hydrolysis of cellulose in the wheat straw.  相似文献   

20.

Poultry feather keratin is the most important by-product from the poultry industry due to its abundance. Different methods have been still applied to process this by-product such as enzymatic hydrolysis which is expensive and inapplicable at the industrial level. This paper presents a study of acid hydrolysis of poultry feathers using different types of acids, sulphuric acid concentration, different temperatures and solid to liquid ratio to obtain a liquid product rich in peptides. The feathers analysis revealed a crude protein content of 88.83%. A maximum peptides production of 676 mg/g was reached using sulphuric acid, 1 molar acid concentration and 50 g/l solid to liquid ratio at a temperature of 90 °C after 300 min. A reaction scheme for protein aggregation and decomposition to polypeptides and amino acids was proposed and a kinetic model for peptides production was developed. The proposed kinetic model proved to be well adapted to the experimental data with R 2 = 0.99.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号