首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive aldehydes can be formed during the oxidation of lipids, glucose, and amino acids and during the nonenzymatic glycation of proteins. Low density lipoprotein (LDL) modified with malondialdehyde are taken up by scavenger receptors on macrophages. In the current studies we determined whether alpha-hydroxy aldehydes also modify LDL to a form recognized by macrophage scavenger receptors. LDL modified by incubation with glycolaldehyde, glyceraldehyde, erythrose, arabinose, or glucose (alpha-hydroxy aldehydes that possess two, three, four, five, and six carbon atoms, respectively) exhibited decreased free amino groups and increased mobility on agarose gel electrophoresis. The lower the molecular weight of the aldehyde used for LDL modification, the more rapid and extensive was the derivatization of free amino groups. Approximately 50-75% of free lysine groups in LDL were modified after incubation with glyceraldehyde, glycolaldehyde, or erythrose for 24-48 h. Less extensive reductions in free amino groups were observed when LDL was incubated with arabinose or glucose, even at high concentration for up to 5 days. LDL modified with glycolaldehyde and glyceraldehyde labeled with (125)I was degraded more extensively by human monocyte-derived macrophages than was (125)I-labeled native LDL. Conversely, LDL modified with (125)I-labeled erythrose, arabinose, or glucose was degraded less rapidly than (125)I-labeled native LDL. Competition for the degradation of LDL modified with (125)I-labeled glyceraldehyde was nearly complete with acetyl-, glycolaldehyde-, and glyceraldehyde-modified LDL, fucoidin, and advanced glycation end product-modified bovine serum albumin, and absent with unlabeled native LDL.These results suggest that short-chain alpha-hydroxy aldehydes react with amino groups on LDL to yield moieties that are important determinants of recognition by macrophage scavenger receptors.  相似文献   

2.
The formation of cholesterol-loaded macrophage foam cells in arterial tissue may occur by the uptake of modified lipoproteins via the scavenger receptor pathway. The macrophage scavenger receptor, also called the acetylated low density lipoprotein (Ac-LDL) receptor, has been reported to recognize Ac-LDL as well as oxidized LDL species such as endothelial cell-modified LDL (EC-LDL). We now report that there is another class of macrophage receptors that recognizes EC-LDL but not Ac-LDL. We performed assays of 0 degrees C binding and 37 degrees C degradation of 125I-Ac-LDL and 125I-EC-LDL by mouse peritoneal macrophages. Competition studies showed that unlabeled Ac-LDL could compete for only 25% of the binding and only 50% of the degradation of 125I-EC-LDL. Unlabeled EC-LDL, however, competed for greater than 90% of 125I-EC-LDL binding and degradation. Unlabeled Ac-LDL was greater than 90% effective against 125I-Ac-LDL; EC-LDL competed for about 80% of 125I-Ac-LDL binding and degradation. Copper-oxidized LDL behaved the same as EC-LDL in all the competition studies. Copper-mediated oxidation of Ac-LDL produced a superior competitor which could now displace 90% of 125I-EC-LDL binding. After 5 h at 37 degrees C in the presence of ligand, macrophages accumulated six times more cell-associated radioactivity from 125I-EC-LDL than from 125I-Ac-LDL, despite approximately equal amounts of degradation to trichloroacetic acid-soluble products, which may imply different intracellular processing of the two lipoproteins. Our results suggest that 1) there is more than one macrophage "scavenger receptor" for modified lipoproteins; and 2) oxidized LDL and Ac-LDL are not identical ligands with respect to macrophage recognition and uptake.  相似文献   

3.
Yao ST  Sang H  Yang NN  Kang L  Tian H  Zhang Y  Song GH  Qin SC 《生理学报》2010,62(5):433-440
The purpose of the present study is to explore the effect of oxidized low density lipoprotein (ox-LDL) on the induction of endoplasmic reticulum stress (ERS) and the underlying mechanisms in ox-LDL-induced macrophage foam-forming process. RAW264.7 macrophages were cultured in DMEM medium containing 10% fetal bovine serum, and then treated with ox-LDL (25, 50 and 100 mg/L), anti-CD36 monoclonal antibody+ox-LDL and tunicamycin (TM), respectively. After incubation for 24 h, the cells were collected. The cellular lipid accumulation was showed by oil red O staining and the content of cellular total cholesterol was quantified by enzymatic colorimetry. The expression of glucose-regulated protein 94 (GRP94), a molecular marker of ERS, was determined by immunocytochemistry assay. The levels of GRP94 protein, phosphorylated inositol-requiring enzyme 1 (p-IRE1) and X box binding protein 1 (XBP1) in RAW264.7 cells were detected by Western blotting. The results indicated that after incubation with ox-LDL (25, 50 and 100 mg/L) for 24 h, a large amount of lipid droplets were found in the cytoplasm, and the contents of cellular total cholesterol were increased by 2.1, 2.8 and 3.1 folds compared with the control, respectively. Anti-CD36 antibody decreased markedly the cellular lipid accumulation induced by ox-LDL at 100 mg/L. Both ox-LDL and TM, a specific ERS inducer, could up-regulate the protein expression of GRP94 in a dose-dependent manner. Furthermore, p-IRE1 and XBP1, two key components of the unfolded protein response, were also significantly induced by the treatment with ox-LDL. The up-regulations of the three proteins induced by ox-LDL were inhibited significantly when the macrophages were pre-incubated with anti-CD36 antibody. These results suggest that ox-LDL may induce ERS in a dose-dependent way and subsequently activate the unfolded protein response signaling pathway in RAW264.7 macrophages, which is potentially mediated by scavenger receptor CD36.  相似文献   

4.
5.
High density lipoprotein uptake by scavenger receptor SR-BII   总被引:4,自引:0,他引:4  
Scavenger receptor class B, type I (SR-BI) mediates selective uptake of high density lipoprotein (HDL) lipids. It is unclear whether this process occurs at the cell membrane or via endocytosis. Our group previously identified an alternative mRNA splicing variant of SR-BI, named SR-BII, with an entirely different, yet highly conserved cytoplasmic C terminus. In this study we aimed to compare HDL uptake by both isoforms. Whereas SR-BI was mainly ( approximately 70%) localized on the surface of transfected Chinese hamster ovary cells, as determined by biotinylation, HDL binding at 4 degrees C, and studies of enhanced green fluorescent protein-tagged SR-BI/II fusion proteins, the majority of SR-BII ( approximately 80-90%) was expressed intracellularly. The cellular distribution of SR-BI was not affected by deletion of the C terminus, which suggests that the distinct C terminus of SR-BII is responsible for its intracellular expression. Pulse-chase experiments showed that SR-BII rapidly internalized HDL protein, whereas in the case of SR-BI most HDL protein remained surface bound. Like its ligand, SR-BII was more rapidly endocytosed compared with SR-BI. Despite more rapid HDL uptake by SR-BII than SR-BI, selective cholesteryl ether uptake was significantly lower. Relative to their levels of expression at the cell surface, however, both isoforms mediated selective uptake with similar efficiency. HDL protein that was internalized by SR-BII largely co-localized with transferrin in the endosomal recycling compartment. Within the endosomal recycling compartment of SR-BII cells, there was extensive co-localization of internalized HDL lipid and protein. These results do not support a model that selective lipid uptake by SR-BI requires receptor/ligand recycling within the cell. We conclude that SR-BII may influence cellular cholesterol trafficking and homeostasis in a manner that is distinct from SR-BI.  相似文献   

6.
Oxidized low density lipoprotein and innate immune receptors   总被引:15,自引:0,他引:15  
PURPOSE OF REVIEW: Atherosclerosis is now recognized as a chronic inflammatory disease. This review discusses recent literature reporting that innate immune receptors bind oxidatively modified LDL and its many oxidized moieties and consequently modulate the atherogenic process. These innate pattern recognition receptors are known to play a central role in pro-inflammatory responses to bacteria by binding pathogen-associated molecular patterns. It is hypothesized that oxidized LDL exposes similar molecular patterns recognized by receptors of innate immunity. RECENT FINDINGS: Minimally modified LDL and its oxidized phospholipids have been found to bind to CD14 or activate Toll-like receptors on macrophages. In turn, various biological activities have been induced, including the stimulation of cytoskeletal rearrangements that alter phagocytic activity and the stimulation of cytokine secretion, such as IL-8. These findings link modified LDL with innate pattern recognition receptors, such as those involved in the lipopolysaccharide signaling pathway. Human epidemiological studies support the involvement of CD14 and TLR4 in cardiovascular diseases. Oxidized LDL has also been demonstrated to bind to C-reactive protein, an opsonic molecule activating classic complement pathway and Fcgamma receptor endocytosis. These data suggest that C-reactive protein may not only be a strong predictor of clinical disease, but may also play a role in atherogenesis. Recent data on other innate immune receptors are discussed in the context of their potential interactions with oxidized LDL and atherogenesis. SUMMARY: Recent findings suggest that oxidized forms of LDL interact with innate immune receptors. Further studies are needed to identify the role of these interactions in inflammation and atherosclerosis.  相似文献   

7.
8.
The low density lipoprotein receptor   总被引:3,自引:0,他引:3  
The study of familial hypercholesterolemia at the molecular level has led to its advancement from a clinical syndrome to a fascinating experimental system. FH was first described 50 years ago by Carl Müller who concluded that the disease produces high plasma cholesterol levels and myocardial infarctions in young people, and is transmitted as an autosomal dominant trait determined by a single gene. The existence of two forms of FH, namely heterozygous and homozygous, was recognized by Khachadurian and Fredrickson and Levy much later. The value of FH as an experimental model system lies in the availability of homozygotes, because mutant genes can be studied without interference from the normal gene. The first and most important breakthrough was the realization that the defect underlying FH could be studied in cultured skin fibroblasts. Rapidly, the LDL receptor pathway was conceptualized and its dysfunction in cells from FH homozygotes was demonstrates. Isolation of the normal LDL receptor protein and studies on the biosynthesis and structure of abnormal receptors in mutant cell lines provided essential groundwork for elucidation of defects at the DNA level. The power of the experimental system, FH, became nowhere more obvious than in work that correlated structural information at the protein level with the elucidation of defined defects in the LDL receptor gene. In addition to revealing important structure-function relationships in the LDL receptor polypeptide and delineating mutational events, studies of FH have established several more general concepts. First, the tight coupling of LDL binding to its internalization suggested that endocytosis was not a non-specific process as suggested from early observations. The key finding was that LDL receptors clustered in coated pits, structures that had been described by Roth and Porter 10 years earlier. These investigators had demonstrated, in electron microscopic studies on the uptake of yolk proteins by mosquito oocytes, that coated pits pinch off from the cell surface and form coated vesicles that transport extracellular fluid into the cell. Studies on the LDL receptor system showed directly that receptor clustering in coated pits is the essential event in this kind of endocytosis, and thus established receptor-mediated endocytosis as a distinct mechanism for the transport of macromolecules across the plasma membrane. Subsequently, many additional systems of receptor-mediated endocytosis have been defined, and variations of the overall pathway have been described.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
10.
Evidence suggests that aggregated low density lipoprotein (AgLDL) accumulates in atherosclerotic lesions. Previously, we showed that AgLDL induces and enters surface-connected compartments (SCC) in human monocyte-derived macrophages by a process we have named patocytosis. Most AgLDL taken up by these macrophages in the absence of serum is stored in SCC and remains undegraded. We now show that macrophages released AgLDL (prepared by vortexing or treatment with phospholipase C or sphingomyelinase) from their SCC when exposed to 10% human lipoprotein-deficient serum (LPDS). Macrophages also took up AgLDL in the presence of LPDS, but subsequently released it. In both cases, the released AgLDL was disaggregated. Although the AgLDL that macrophages took up could not pass through a 0.45-micrometer filter, >60% of AgLDL could pass this filter after release from the macrophages. Disaggregation of AgLDL was verified by gel-filtration chromatography and electron microscopy that also showed particles larger than LDL, reflecting fusion of LDL that aggregates. The factor in serum that mediated AgLDL release and disaggregation was plasmin generated from plasminogen by macrophage urokinase plasminogen activator. AgLDL release was decreased >90% by inhibitors of plasmin (epsilon-amino caproic acid and anti-plasminogen mAb), and also by inhibitors of urokinase plasminogen activator (plasminogen activator inhibitor-1 and anti-urokinase plasminogen activator mAb). Moreover, plasminogen could substitute for LPDS and produce similar macrophage release and disaggregation of AgLDL. Because only plasmin bound to the macrophage surface is protected from serum plasmin inhibitors, interaction of AgLDL with macrophages was necessary for reversal of its aggregation by LPDS. The released disaggregated LDL particles were competent to stimulate LDL receptor-mediated endocytosis in cultured fibroblasts. Macrophage-mediated disaggregation of aggregated and fused LDL is a mechanism for transforming LDL into lipoprotein structures size-consistent with lipid particles found in atherosclerotic lesions.  相似文献   

11.
Oxidized LDL (oxLDL) is known to induce endothelial adhesion molecule and monocyte chemoattractant protein 1 expression and this is thought to be involved in monocyte recruitment into atherosclerotic lesions. oxLDL has also been found to induce macrophage proliferation. The purpose of the present study was to determine whether oxLDL might also have the ability to increase macrophage populations by inhibiting apoptosis. We found that oxLDL caused a dose-dependent inhibition of the apoptosis that occurs in cultured bone marrow-derived macrophages after macrophage colony-stimulating factor (M-CSF) withdrawal without inducing proliferation. Incubation of macrophages with either native LDL or acetylated LDL had no effect on apoptosis. The prosurvival effect of oxLDL was not inhibited by neutralizing antibodies to granulocyte-macrophage colony-stimulating factor, was maintained in mice homozygous for a mutation in the M-CSF gene, and was not due to other secreted cytokines or growth factors. oxLDL caused activation of the mitogen-activated protein kinases ERK1/2 (extracellular signal-regulated kinases 1 and 2) as well as protein kinase B (PKB), a target of phosphatidylinositol 3-kinase (PI 3-kinase). Furthermore, there was phosphorylation of two important prosurvival PKB targets, I-kappaBalpha(Ser-32) and Bad(Ser-136). The MEK inhibitors PD 98059 and U0126 blocked ERK1/2 activation but did not diminish survival. Conversely, the PI 3-kinase inhibitors LY 294002 and wortmannin blocked PKB activation, and the ability of oxidized LDL to promote macrophage survival.Taken together, these results indicate that oxLDL can directly activate a PI 3-kinase/PKB-dependent pathway that permits macrophage survival in the absence of growth factors.  相似文献   

12.
13.
Low density lipoprotein (LDL)-carried cholesterol is a primary substrate for steroid hormone synthesis by luteinized human granulosa cells. Chorionic gonadotropin and 8-bromo-cAMP both increase LDL receptor levels in granulosa cells by stimulating accumulation of the receptor mRNA. LDL and 25-hydroxycholesterol reduce LDL receptor expression, but this suppressive effect is partially overcome by 8-bromo-cAMP. Using fusion gene constructs containing the LDL receptor gene promoter transfected into JEG-3 cells, a cyclic AMP responsive enhancer could not be identified in the LDL receptor gene upstream promoter in transfection studies. We suggest that the LDL receptor gene in human steroidogenic cells is under negative control by a sterol effector, but that a cyclic AMP triggered process overcomes, to some extent, the sterol-mediated suppression. The detailed mechanisms by which sterol and cyclic AMP modulate LDL receptor gene expression remain to be elucidated.  相似文献   

14.
We have investigated the effects of oxidized low density lipoproteins(Ox-LDL) on aortic smooth muscle cell (SMC) proliferation andthe biosynthesis of glycosphingo-lipids. We found that Ox-LDL exerted a concentration, time, and temperaturedependent alteration of cell proliferation and the biosynthesisof lactosylceramide. At low concentrations (5–10 µg/mlmedium) Ox-LDL stimulated cell proliferation measured by anincrease in the incorporation of 3H-thymidine in cells and thesynthesis of lactosylceramide, but not glucosylceramide synthesis.Oxidized LDL exerted a threefold increase in the incorporationof [3H]-galactose and [3H]-serine in lactosylceramide. The activityof lactosylceramide synthetase; UDP-galactose glucosylceramideß1  相似文献   

15.
The internalization of oxidized low density lipoprotein (OxLDL) by macrophages is hypothesized to contribute to foam cell formation and eventually to atherosclerotic lesion formation. OxLDL is a ligand for the acetylated low density lipoprotein (AcLDL) receptor, however, our data show that this receptor accounts for less than half of OxLDL uptake by mouse macrophages, suggesting additional receptors for OxLDL. We have developed a novel expression cloning strategy in order to isolate clones encoding OxLDL receptors. In addition to the AcLDL receptor, we isolated a molecular clone for a structurally unrelated receptor capable of mediating the high affinity uptake of OxLDL following transfection into cells. This receptor has been identified as the mouse Fc gamma RII-B2, a member of a family of receptors known to mediate immune complex uptake through recognition of the Fc region of IgG. The uptake of OxLDL by cells transfected with the Fc gamma RII-B2 clone is not blocked by AcLDL but is blocked by the anti-Fc gamma RII monoclonal antibody, 2.4G2.  相似文献   

16.
The receptor for low density lipoprotein was purified from bovine adrenal cortex in the presence of the nonionic detergent octylglucoside. Receptors were incorporated into the bilayer of egg phosphatidylcholine vesicles by a detergent-dialysis method. Reconstituted receptors were functional in that they bound low density lipoprotein as well as a monoclonal antibody directed against the receptor in a specific, saturable fashion. Binding activity of reconstituted receptors was measured by a gel chromatography assay. The orientation of the receptor molecule within the phospholipid bilayer was investigated by binding assays following proteolytic digestion. Reconstituted receptors showed an orientation that was functionally indistinguishable from that of low density lipoprotein receptors in the plasma membrane of intact human fibroblasts.  相似文献   

17.
Receptor-mediated endocytosis of oxidized low density lipoprotein (OxLDL) by macrophages has been implicated in foam cell transformation in the process of atherogenesis. Although several scavenger receptor molecules, including class A scavenger receptors and CD36, have been identified as OxLDL receptors on macrophages, additional molecules on macrophages may also be involved in the recognition of OxLDL. From a cDNA library of phorbol 12-myristate 13-acetate-stimulated THP-1 cells, we isolated a cDNA encoding a novel protein designated SR-PSOX (scavenger receptor that binds phosphatidylserine and oxidized lipoprotein), which acts as a receptor for OxLDL. SR-PSOX was a type I membrane protein consisting of 254 amino acids, expression of which was shown on human and murine macrophages with a molecular mass of 30 kDa. SR-PSOX could specifically bind with high affinity, internalize, and degrade OxLDL. The recognition of OxLDL was blocked by polyinosinic acid and dextran sulfate but not by acetylated low density lipoprotein. Taken together, SR-PSOX is a novel class of molecule belonging to the scavenger receptor family, which may play important roles in pathophysiology including atherogenesis.  相似文献   

18.
19.
To evaluate the contribution of the macrophage low density lipoprotein receptor (LDLR) to atherosclerotic lesion formation, we performed bone marrow transplantation studies in different mouse strains. First, LDLR(-/-) mice were transplanted with either LDLR(+/+) marrow or LDLR(-/-) marrow and were challenged with an atherogenic Western type diet. The diet caused severe hypercholesterolemia of a similar degree in the two groups, and no differences in the aortic lesion area were detected. Thus, macrophage LDLR expression does not influence foam cell lesion formation in the setting of extreme LDL accumulation. To determine whether macrophage LDLR expression affects foam cell formation under conditions of moderate, non-LDL hyperlipidemia, we transplanted C57BL/6 mice with either LDLR(-/-) marrow (experimental group) or LDLR(+/+) marrow (controls). Cholesterol levels were not significantly different between the two groups at baseline or after 6 weeks on a butterfat diet, but were 40% higher in the experimental mice after 13 weeks, mostly due to accumulation of beta-very low density lipoprotein (beta-VLDL). Despite the increase in cholesterol levels, mice receiving LDLR(-/-) marrow developed 63% smaller lesions than controls, demonstrating that macrophage LDLR affects the rate of foam cell formation when the atherogenic stimulus is beta-VLDL. We conclude that the macrophage LDLR is responsible for a significant portion of lipid accumulation in foam cells under conditions of dietary stress.  相似文献   

20.
Serum amyloid A (SAA) is an acute phase protein whose expression is markedly up-regulated during inflammation and infection. The physiological function of SAA is unclear. In this study, we reported that SAA promotes cellular cholesterol efflux mediated by scavenger receptor B-I (SR-BI). In Chinese hamster ovary cells, SAA promoted cellular cholesterol efflux in an SR-BI-dependent manner, whereas apoA-I did not. Similarly, SAA, but not apoA-I, promoted cholesterol efflux from HepG2 cells in an SR-BI-dependent manner as shown by using the SR-BI inhibitor BLT-1. When SAA was overexpressed in HepG2 cells using adenovirus-mediated gene transfer, the endogenously expressed SAA promoted SR-BI-dependent efflux. To assess the effect of SAA on SR-BI-mediated efflux to high density lipoprotein (HDL), we compared normal HDL, acute phase HDL (AP-HDL, prepared from mice injected with lipopolysaccharide), and AdSAA-HDL (HDL prepared from mice overexpressing SAA). Both AP-HDL and AdSAA-HDL promoted 2-fold greater cholesterol efflux than normal HDL. Lipid-free SAA was shown to also stimulate ABCA1-dependent cholesterol efflux in fibroblasts, in line with an earlier report (Stonik, J. A., Remaley, A. T., Demosky, S. J., Neufeld, E. B., Bocharov, A., and Brewer, H. B. (2004) Biochem. Biophys. Res. Commun. 321, 936-941). When added to cells together, SAA and HDL exerted a synergistic effect in promoting ABCA1-dependent efflux, suggesting that SAA may remodel HDL in a manner that releases apoA-I or other efficient ABCA1 ligands from HDL. SAA also facilitated efflux by a process that was independent of SR-BI and ABCA1. We conclude that the acute phase protein SAA plays an important role in HDL cholesterol metabolism by promoting cellular cholesterol efflux through a number of different efflux pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号