首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(S)-(+)-2,2-Dimethylcyclopropane carboxylic acid [(S)-(+)-DMCPA] is a key chiral intermediate for production of Cilastatin, an excellent renal dehydropeptidase-I inhibitor. In this study, a new method for preparation of (S)-(+)-DMCPA with microbial esterases was investigated. A microbial screening program obtained six esterase-producing isolates that could display relatively high activities and enantioselectivities using racemic ethyl 2,2-dimethylcyclopropane carboxylate (DMCPE) as screening substrate, aiming at forming optically pure (S)-(+)-DMCPA. Further selection was carried out with substrates having different alcohol moieties, including methyl, ethyl, and 2-chloroethyl esters. Finally, one of these strains, numbered ECU1013, with high enantioselectivity toward the hydrolytic resolution of methyl 2,2-dimethylcyclopropane carboxylate (DMCPM), afforded the (S)-product in 92 % ee, and was later identified as Rhodococcus sp. According to our research, there were several active esterases to DMCPM in cells of Rhodococcus sp. ECU1013; however, (S)-preferential esterase was selectively enriched based on the time-dependent profile of esterases biosynthesis, thereby the enantiomeric excess of biotransformation product (ee p) was constantly increased, finally maintained at 95 % (S). To improve the yield, various organic solvents were employed for better dispersion of the hydrophobic substrate. As a result, (±)-DMCPM of up to 400 mM in the organic phase of isooctane was enantioselectively hydrolyzed into (S)-(+)-DMCPA, with an isolation yield of 38 % and a further increase of ee p to 99 %.  相似文献   

2.

Objectives

To investigate the efficiency of a new cascade biocatalysis system for the conversion of R, S-β-amino alcohols to enantiopure vicinal diol and β-amino alcohol.

Results

An efficient cascade biocatalysis was achieved by combination of a transaminase, a carbonyl reductase and a cofactor regeneration system. An ee value of > 99% for 2-amino-2-phenylethanol and 1-phenyl-1, 2-ethanediol were simultaneously obtained with 50% conversion from R, S-2-amino-2-phenylethanol. The generality of the cascade biocatalysis was further demonstrated with the whole-cell approaches to convert 10–60 mM R, S-β-amino alcohol to (R)- and (S)-diol and (R)- and (S)-β-amino alcohol in 90–99% ee with 50–52% conversion. Preparative biotransformation was demonstrated at a 50 ml scale with mixed recombinant cells to give both (R)- and (S)-2-amino-2-phenylethanol and (R)- and (S)-1-phenyl-1, 2-ethanediol in > 99% ee and 40–42% isolated yield from racemic 2-amino-2-phenylethanol.

Conclusions

This cascade biocatalysis system provides a new practical method for the simultaneous synthesis of optically pure vicinal diol and an β-amino alcohol.
  相似文献   

3.
Levulinic acid is a feasible platform chemical derived from acid-catalyzed hydrolysis of lignocellulose. The conversion of this substrate to (S)-γ-valerolactone ((S)-GVL) was investigated in a chemo-enzymatic reaction sequence that benefits from mild reaction conditions and excellent enantiomeric excess of the desired (S)-GVL. For that purpose, levulinic acid was chemically esterified over the ion exchange resin Amberlyst 15 to yield ethyl levulinate (LaOEt). The keto ester was successfully reduced by (S)-specific carbonyl reductase from Candida parapsilosis (CPCR2) in a substrate-coupled cofactor regeneration system utilizing isopropanol as cosubstrate. In classical batch experiments, a maximum conversion of 95 % was achieved using a 20-fold excess of isopropanol. Continuous reduction of LaOEt was carried out for 24 h, and a productivity of more than 5 mg (S)-ethyl-4-hydroxypentanoate (4HPOEt) per μg CPCR2 was achieved. Afterwards (S)-4HPOEt (>99%ee) was substituted to lipase-catalyzed lactonization using immobilized lipase B from Candida antarctica to yield (S)-GVL in 90 % overall yield and >99%ee.  相似文献   

4.
(S)-Styrene oxide, (S)-2-chlorostyrene oxide (CSO), (S)-3-CSO and (S)-4-CSO with 99.9 %ee were obtained with a yield of 20.6, 39.3, 28.7 and 26.8 % from 4 mM corresponding racemic substrates using 10 mg cells of a newly-isolated Sphingopyxis sp. at pH 8.0 and 25 °C in 1 ml 100 mM Tris/HCl buffer after 420, 100, 120 and 55 min, respectively. For racemic 2CSO, well-known for one of the racemates that is difficult to obtained in enantiomerically pure form, (S)-2-CSO with 99.9 %ee, 39.3 % yield (theoretical yield 50 %) and enantiomeric ratio of 42.1 was obtained. The newly-isolated strain can thus be used as whole-cell biocatalyst in the production of various (S)-CSO with a chlorine group at different positions.  相似文献   

5.
In the Candida antarctica lipase B-catalyzed hydrolysis of (R,S)-azolides derived from (R,S)-N-protected proline in water-saturated methyl tert-butyl ether (MTBE), high enzyme activity with excellent enantioselectivity (V S V R ?1 ?>?100) for (R,S)-N-Cbz-proline 1,2,4-triazolide (1) and (R,S)-N-Cbz-proline 4-bromopyrazolide (2) was exploited in comparison with their corresponding methyl ester analog (3). Changing of the substrate structure, water content, solvent, and temperature was found to have profound influences on the lipase performance. On the basis of enzyme activity and enantioselectivity and solvent boiling point, the best reaction condition of using 1 as the substrate in water-saturated MTBE at 45 °C was selected and further employed for the successful resolution of (R,S)-N-Cbz-pipecolic 1,2,4-triazolide (5) and (R,S)-N-Boc-nipecotic 1,2,4-triazolide (9). Moreover, more than 89.1 % recovery of remained (R)-1 is obtainable in five cycles of enzyme reusage, when pH 7 phosphate buffers were employed as the extract at 4 °C.  相似文献   

6.
A novel two-phase partitioning bioreactor (TPPB) modified by polysulfone (PSF) microspheres and immobilized enzyme (novozym-435) was formed, and the resulting TPPB was applied into mandelic acid chiral separation. The PSF microspheres containing n-hexanol (named PSF/hexanol microspheres) was prepared by using the phase inversion method, which was used as the organic phase. Meanwhile, the immobilized enzyme novozym-435 was used as a biocatalyst. The water phase was composed of the phosphate buffer solution (PBS). (R, S)-Methyl mandelate was selected as the substrate to study enzymatic properties. Different reaction factors have been researched, such as pH, reaction time, temperature and the quantity of biocatalyst and PSF/hexanol microspheres added in. Finally, (S)-mandelic acid was obtained with an 80 % optical purity after 24 h in the two-phase partitioning bioreactor. The enantiomeric excess (eep) values were very low in the water phase, in which the highest eep value was only 46 %. The eep of the two-phase partitioning bioreactor had been enhanced more obviously than that catalyzed in the water phase.  相似文献   

7.
《Process Biochemistry》2014,49(10):1637-1646
One-pot conversion with whole cells of bacteria was performed for biooxidation of meso monocyclic (3a–b) and bicyclic diols (3c–e) into corresponding chiral lactones of bicyclo[4.3.0]nonane structure (2a–b) as well as exo- and endo-bridged lactones with the structure of [2.2.1] (3c–d) and [2.2.2] (3e). Micrococcus sp. DSM 30771 was selected as biocatalyst with significant alcohol dehydrogenase activity. Among tested strains, microbial oxidation of meso diols 3a–e catalyzed by Micrococcus sp. afforded enantiomerically pure ((+)-(2S,3R)-2c (ee = 99%), (+)-(2S,3R)-2e (ee = 99%)) or enriched ((+)-(1S,5R)-2a (ee = 90%), (−)-(1S,5R)-2b (ee = 86%), (+)-(2S,3R)-2d (ee = 80%)) lactone moieties. Comparative study with respect to microbial cultivation as well as biooxidation was undertaken to verify agreement of secondary metabolite biosynthesis in different scales: from MTP (4 mL), across shake flask (100 mL) till bioreactor (4 L). The results from biotransformations showed quite similar dependence in oxidation of all substrates 3a–e in MTP and flasks as well, thereby confirmed the validity and reasonable approach of using MTP for preliminary studies.  相似文献   

8.

Objectives

To discover novel ketoreductases (KRED) from soil metagenome preparation of chiral alcohols.

Results

Three putative KRED were cloned, heterologously expressed in Eschericha coli and characterized based on the sequence analysis of soil metagenome. All the three enzymes (KRED424, KRED432, and KRED433) had maximum activity at 55 °C and pH 7. KRED424 had a broader substrate spectrum compared with the other two. Three prochiral carbonyl compounds were used to evaluate the abilities of enantioselective reductions of the KRED. For N-Boc-3-pyrrolidone, all enzymes produced an (S)-type alcohol in enantiomeric excess (>99 % ee). For ethyl 2-oxo-4-phenylbutyrate, KRED424 showed a higher conversion (91.5 %) and enantioselectivity (S-type, >99 % ee) than KRED432 and KRED433. For ethyl 4-chloroacetoacetate (COBE), both of KRED424 and KRED433 completely converted 20 mM substrate and KRED433 could obtain an (R)-alcohol with 94 % ee.

Conclusions

The three ketoreductases have potential in the preparation of pharmaceuticals and fine chemicals.
  相似文献   

9.
Novozyme 435 could be a highly efficient catalyst in the asymmetric acylation of (R,S)-3-n-butylphthalide in tetrahydrofuran–hexane solvents. The effect of various reaction parameters such as agitation velocity, water content, mixed media, temperature, concentration of Novozyme 435, molar ratio of acetic anhydride to (R,S)-3-n-butylphthalide, reaction time, enantiomeric excess of substrate (eeS), enantiomeric excess of product (eeP), and enantioselective ratio (E) were studied. Tetrahydrofuran markedly improved (R,S)-3-n-butylphthalide conversion, enantiomeric excess of remaining 3-n-butylphthalide, and enantiomeric ratio. The optimum media were 50% (v/v) tetrahydrofuran and 50% (v/v) hexane. Other ideal reaction conditions were an agitation velocity of 150 rpm, 0.4% (v/v) water content, temperature of 30°C, 8 mg/mL dosage of Novozyme 435, 8:1 (0.4 mmol: 0.05 mmol) molar ratio of acetic anhydride to (R,S)-3-n-butylphthalide, and a reaction time of 48 hr. Under the optimum conditions, 96.4% eeS and 49.3% conversion of (R,S)-3-n-butylphthalide were achieved. In addition, enantiomeric excess of the product was above 98.0%.  相似文献   

10.
(S)-(4-Chlorophenyl)-(pyridin-2-yl)methanol [(S)-CPMA] is an important chiral intermediate of anti-allergic drug Betahistine. Carbonyl reductase-producing microorganisms were isolated from soil samples for the stereoselective reduction of (4-chlorophenyl)-(pyridin-2-yl)methanone (CPMK) to (S)-CPMA. Among over 400 microorganisms isolated, one strain exhibiting the highest activity was selected and identified as Kluyveromyces sp. After optimization, the biotransformation reaction catalyzed by Kluyveromyces sp. CCTCC M2011385 whole-cell gave product (S)-CPMA in 81.5% ee and 87.8% yield at substrate concentration of 2 g/L in aqueous phase. Using an aqueous two-phase system (ATPs) consisted of PEG4000 (20%, w/w) and Na2HPO4 (14%, w/w), the product reached 86.7% ee and 92.1% yield at a higher substrate concentration of 6 g/L. The substrate tolerance and biocompatibility of microbial cells are greatly improved in ATPs by accumulating substrate/product in the upper PEG solution. This study, for the first time, reports the production of (S)-CPMA catalyzed by microbial cells.  相似文献   

11.
Enterobacter sp. MR1 an endophytic plant growth promoting bacterium was isolated from the roots of Butea monosperma, a drought tolerant plant. Genome sequencing of Enterobacter spp. MR1 was carried out in Ion Torrent (PGM), Next Generation Sequencer. The data obtained revealed 640 contigs with genome size of 4.58 Mb and G+C content of 52.8 %. This bacterium may contain genes responsible for inducing drought tolerance in plant, including genes for phosphate solubilization, growth hormones and other useful genes for plant growth.  相似文献   

12.
Efficient and highly enantioselective hydrolysis of 2-carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester (CNDE) is the most crucial step in chemoenzymatic synthesis of Pregabalin. By using site-saturation mutagenesis and high-throughput screening techniques, lipase Lip from Thermomyces lanuginosus DSM 10635 was engineered to improve its activity towards CNDE. The triple mutant, S88T/A99N/V116D exhibited a 60-fold improvement in specific activity for CNDE (2.35 U/mg) over the wild-type Lip (0.039 U/mg). Modeling and docking studies demonstrated that the mutant could more effectively stabilize oxygen anions in transition states and the lid of Lip in the open conformation. Additionally, the kinetic resolution of CNDE catalyzed by Escherichia coli cell overexpressing S88T/A99N/V116D mutant afforded (3S)-2-carboxyethyl-3-cyano-5-methylhexanoic acid in 42.4 % conversion and 98 % ee within 20 h with a substrate loading of 1 M (255 g/l). These results demonstrated that a novel and promising biocatalyst was created for efficient chemoenzymatic manufacturing of Pregabalin.  相似文献   

13.
Biotransformations of two substrates: chalcone (1) and 2′-hydroxychalcone (4) were carried out using four yeast strains and five filamentous fungi cultures. Substrate 1 was effectively hydrogenated in all of tested yeast cultures (80–99% of substrate conversion after 1 h of biotransformation) affording dihydrochalcone 2. In the cultures of filamentous fungi the reaction was much slower, however, Chaetomium sp. gave product 2 in 97% yield. After 12 h of incubation a reduction of dihydrochalcone 2 to alcohol 3 was additionally observed. After 3 days of biotransformation in the culture of Rhodotorula rubra product (S)-3 was obtained with 75% ee (enantiomeric excess) and 99% of conversion. Also after a 3-day biotransformation using the strain Fusarium culmorum product (R)-3 was obtained with 98% ee and 97% of conversion. In most of the tested strains a change in enantiomeric excess of compound 3 during the biotransformation process was noticed. In the culture of Rhodotorula glutinis after 3 h of transformation alcohol (R)-3 was formed with 47% ee and 31% of substrate conversion, whereas after 6 days the (S)-3 enantiomer was obtained with 99% ee and 91% of conversion. In the case of 2′-hydroxychalcone (4), the hydrogenation proceeded much slower and led to 2′-hydroxydihydrochalcone (5) – in the culture of Yarrowia lipolytica 97% of conversion was observed after 3 days. In all cultures of the tested strains no products of 2′-hydroxydihydrochalcone reduction were detected.  相似文献   

14.
Soil respiration (R s) plays a key role in any consideration of ecosystem carbon (C) balance. Based on the well-known temperature response of respiration in plant tissue and microbes, R s is often assumed to increase in a warmer climate. Yet, we assume that substrate availability (labile C input) is the dominant influence on R s rather than temperature. We present an analysis of NPP components and concurrent R s in temperate deciduous forests across an elevational gradient in Switzerland corresponding to a 6 K difference in mean annual temperature and a considerable difference in the length of the growing season (174 vs. 262 days). The sum of the short-lived NPP fractions (“canopy leaf litter,” “understory litter,” and “fine root litter”) did not differ across this thermal gradient (+6 % from cold to warm sites, n.s.), irrespective of the fact that estimated annual forest wood production was more than twice as high at low compared to high elevations (largely explained by the length of the growing season). Cumulative annual R s did not differ significantly between elevations (836 ± 5 g C m?2 a?1 and 933 ± 40 g C m?2 a?1 at cold and warm sites, +12 %). Annual soil CO2 release thus largely reflected the input of labile C and not temperature, despite the fact that R s showed the well-known short-term temperature response within each site. However, at any given temperature, R s was lower at the warm sites (downregulation). These results caution against assuming strong positive effects of climatic warming on R s, but support a close substrate relatedness of R s.  相似文献   

15.
Rhodococcus erythropolis WZ010 was capable of producing optically pure (2S,3S)-2,3-butanediol in alcoholic fermentation. The gene encoding an acetoin(diacetyl) reductase from R. erythropolis WZ010 (ReADR) was cloned, overexpressed in Escherichia coli, and subsequently purified by Ni-affinity chromatography. ReADR in the native form appeared to be a homodimer with a calculated subunit size of 26,864, belonging to the family of the short-chain dehydrogenase/reductases. The enzyme accepted a broad range of substrates including aliphatic and aryl alcohols, aldehydes, and ketones. It exhibited remarkable tolerance to dimethyl sulfoxide (DMSO) and retained 53.6 % of the initial activity after 4 h incubation with 30 % (v/v) DMSO. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2S,3S)-2,3-butanediol via (S)-acetoin. The optimal pH and temperature for diacetyl reduction were pH 7.0 and 30 °C, whereas those for (2S,3S)-2,3-butanediol oxidation were pH 9.5 and 25 °C. Under the optimized conditions, the activity of diacetyl reduction was 11.9-fold higher than that of (2S,3S)-2,3-butanediol oxidation. Kinetic parameters of the enzyme showed lower K m values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2S,3S)-2,3-butanediol and NAD+, suggesting its physiological role in favor of (2S,3S)-2,3-butanediol formation. Interestingly, the enzyme showed higher catalytic efficiency for (S)-1-phenylethanol oxidation than that for acetophenone reduction. ReADR-catalyzed asymmetric reduction of diacetyl was coupled with stereoselective oxidation of 1-phenylethanol, which simultaneously formed both (2S,3S)-2,3-butanediol and (R)-1-phenylethanol in great conversions and enantiomeric excess values.  相似文献   

16.
Chiral cyclic β-hydroxy ketones represent key motifs in the production of natural products of biological interest. Although the molecules are structurally simple, they require cumbersome synthetic steps to get access to them and their synthesis remains a challenge in organic chemistry. In this report, we describe a straightforward approach to enantiomerically enriched (R)- and (S)-3-hydroxycyclopentanone 2a, (R)- and (S)-3-hydroxycyclohexanone 2b, and (R)- and (S)-3-hydroxycycloheptanone 2c involving a transesterification resolution of the racemates using whole cells of marine microorganisms as catalysts and vinyl acetate the acyl donor and solvent. Twenty-six strains from a wide collection of isolates from marine sediments were screened, and seven strains were found to markedly catalyze the resolution in an asymmetric fashion. Using the strain Serratia sp., (R)-2a was isolated in 27% yield with 92% ee and (S)-2a in 65% yield with 43% ee, corresponding to an E-value of 37; (R)-2b was isolated in 25% yield with 91% ee and (S)-2b in 67% yield with 39% ee, corresponding to an E-value of 40; and (R)-2c was isolated in 30% yield with 96% ee and (S)-2c in 63% yield with 63% ee, corresponding to an E-value of 75.  相似文献   

17.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee >99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications.  相似文献   

18.
Substrate-directed screening was carried out to find bacteria that could deacylate O-acetylated mandelic acid from environmental samples. From more than 200 soil isolates, we identified for the first time that Pseudomonas sp. ECU1011 biocatalytically deacylated (S)-α-acetoxyphenylacetic acid with high enantioselectivity (E > 200), yielding (S)-mandelic acid with 98.1% enantiomeric excess (ee) at a 45.5% conversion rate. The catalytic deacylation of (S)-α-acetoxyphenylacetic acid by the resting cell was optimized using a single-factor method to yield temperature and pH optima of 30°C and 6.5, respectively. These optima help to reduce the nonselective spontaneous hydrolysis of the racemic substrate. It was found that substrate concentrations up to 60 mM could be used. 2-Propanol was used as a moderate cosolvent to help the substrate disperse in the aqueous phase. Under optimized reaction conditions, the ee of the residual (R)-α-acetoxyphenylacetic acid could be improved further, to greater than 99%, at a 60% conversion rate. Furthermore, using this newly isolated strain of Pseudomonas sp. ECU1011, three kinds of optically pure analogs of (S)-mandelic acid and (R)-α-acetoxyphenylacetic acid were successfully prepared at high enantiomeric purity.  相似文献   

19.

Objectives

To prepare (R)-phenyl-1,2-ethanediol ((R)-PED) with high enantiomeric excess (ee p) and yield from racemic styrene oxide (rac-SO) at high concentration by bi-enzymatic catalysis.

Results

The bi-enzymatic catalysis was designed for enantioconvergent hydrolysis of rac-SO by a pair of novel epoxide hydrolases (EHs), a Vigna radiata EH3 (VrEH3) and a variant (AuEH2A250I) of Aspergillus usamii EH2. The simultaneous addition mode of VrEH3 and AuEH2A250I, exhibiting the highest average turnover frequency (aTOF) of 0.12 g h?1 g?1, was selected, by which rac-SO (10 mM) was converted into (R)-PED with 92.6% ee p and 96.3% yield. Under the optimized reaction conditions: dry weight ratio 14:1 of VrEH3-expressing E. coli/vreh3 to AuEH2A250I-expressing E. coli/Aueh2 A250I and reaction at 20 °C, rac-SO (10 mM) was completely hydrolyzed in 2.3 h, affording (R)-PED with 98% ee p. At the weight ratio 0.8:1 of rac-SO to two mixed dry cells, (R)-PED with 97.4% ee p and 98.7% yield was produced from 200 mM (24 mg/ml) rac-SO in 10.5 h.

Conclusions

Enantioconvergent hydrolysis of rac-SO at high concentration catalyzed by both VrEH3 and AuEH2A250I is an effective method for preparing (R)-PED with high ee p and yield.
  相似文献   

20.
An efficient simultaneous synthesis of enantiopure (S)-amino acids and chiral (R)-amines was achieved using α/ω-aminotransferase (α/ω-AT) coupling reaction with two-liquid phase system. As, among the enzyme components in the α/ω-AT coupling reaction systems, only ω-AT is severely hampered by product inhibition by ketone product, the coupled reaction cannot be carried out above 60 mM substrates. To overcome this problem, a two-liquid phase reaction was chosen, where dioctylphthalate was selected as the solvent based upon biocompatibility, partition coefficient and effect on enzyme activity. Using 100 mM of substrates, the AroAT/ω-AT and the AlaAT/ω-AT coupling reactions asymmetrically synthesized (S)-phenylalanine and (S)-2-aminobutyrate with 93% (>99% eeS) and 95% (>99% eeS) of conversion yield, and resolved the racemic α-methylbenzylamine with 56% (95% eeR) and 54% (96% eeR) of conversion yield, respectively. Moreover, using 300 mM of 2-oxobutyrate and 300 mM of racemic α-methylbenzylamine as substrates, the coupling reactions yielded 276 mM of (S)-2-aminobutyrate (>99% ee) and 144 mM of (R)-α-methylbenzylamine (>96% ee) in 9 h. Here, most of the reactions take place in the aqueous phase, and acetophenone mainly moved to the organic phase according to its partition coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号