首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To investigate the catabolism of ectoine and hydroxyectoine, which are the major compatible solutes synthesized by Chromohalobacter salexigens. METHODS AND RESULTS: Growth curves performed in M63 minimal medium with low (0.75 mol l(-1) NaCl), optimal (1.5 mol l(-1) NaCl) or high (2.5 mol l(-1) NaCl) salinity revealed that betaine and ectoines were used as substrate for growth at optimal and high salt. Ectoine transport was maximal at optimal salinity, and showed 3- and 1.5-fold lower values at low and high salinity respectively. The salt-sensitive ectA mutant CHR62 showed an ectoine transport rate 6.8-fold higher than that of the wild type. Incubation of C. salexigens in a mixture of glucose and ectoine resulted in a biphasic growth pattern. However, CO(2) production due to ectoine catabolism was lower, but not completely abolished, in the presence of glucose. When used as the sole carbon source, glycine betaine effectively inhibited ectoine and hydroxyectoine synthesis at any salinity. CONCLUSIONS: The catabolic pathways for ectoine and hydroxyectoine in C. salexigens operate at optimal and high (although less efficiently) salinity. Endogenous ectoine(s) may repress its own transport. Ectoine utilization was only partially repressed by glucose. Betaine, when used as carbon source, suppresses synthesis of ectoines even under high osmolarity conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is a previous step to the subsequent isolation and manipulation of the catabolic genes, so as to generate strains with enhanced production of ectoine and hydroxyectoine.  相似文献   

2.
3.
The halophilic bacterium Halomonas elongata synthesizes as its main compatible solute the aspartate derivative ectoine. We constructed a deletion mutant of H. elongata, KB1, defective in ectoine synthesis and tolerating elevated salt concentrations only in the presence of external compatible solutes. The dependency of KB1 on solute uptake for growth in high-salt medium was exploited to select insertion mutants unable to accumulate external solutes via osmoregulated transporters. One insertion mutant out of 7,200 failed to accumulate the osmoprotectants ectoine and hydroxyectoine. Genetic analysis of the insertion site proved that the mutation affected an open reading frame (ORF) of 1,281 bp (teaC). The nucleotide sequence upstream of teaC was determined, and two further ORFs of 603 bp (teaB) and 1,023 bp (teaA) were identified. Deletion of teaA and teaB proved that all three genes are mandatory for ectoine uptake. Sequence comparison showed significant identity of TeaA, TeaB, and TeaC to the transport proteins of the recently identified tripartite ATP-independent periplasmic transporter family (TRAP-T). The affinity of the cells for ectoines was determined (K(s) = 21.7 microM), suggesting that the transporter TeaABC exhibits high affinity for ectoines. An elevation of the external osmolarity resulted in a strong increase in ectoine uptake via TeaABC, demonstrating that this transporter is osmoregulated. Deletion of teaC and teaBC in the wild-type strain led to mutants which excreted significant amounts of ectoine into the medium when cultivated at high salt concentrations. Therefore, the physiological role of TeaABC may be primarily to recover ectoine leaking through the cytoplasmic membrane.  相似文献   

4.
The effect of the addition of compatible solutes (ectoine and trehalose) on the denitrification process of saline wastewater was studied. In saline wastewater, it was observed that the initial concentration of nitrates was 500 mg N l?1. A fatty substance isolated from oiled bleaching earth (waste of vegetable oil refining process) was used as a source of carbon.The consortium, which was responsible for the denitrification process originated from the wastewater of the vegetable oil industry. The consortium of microorganisms was identified by the use of restriction fragment length polymorphism of 16S rRNA gene amplicons and sequencing techniques. It was noted that ectoine affects significantly the activity of lipase and nitrate reductase, and resulted in faster denitrification compared to saline wastewater with the addition of trehalose or control saline wastewater (without compatible solutes). It was observed that relative enzyme activities of lipase and nitrate reductase increased by 32 and 35%, respectively, in the presence of 1 mM ectoine. This resulted in an increase in specific nitrate reduction rate in the presence of 1 mM ectoine to 5.7 mg N g?1 VSS h?1, which was higher than in the absence of ectoine (3.2 mg N g?1 VSS h?1). The addition of trehalose did not have an effect on nitrate removals. Moreover, it was found that trehalose was used up completely by bacteria as a source of carbon in the denitrification process. The fatty acids were biodegraded by 74% in the presence of 1 mM ectoine.  相似文献   

5.
Ectoine and hydroxyectoine are well-recognized members of the compatible solutes and are widely employed by microorganisms as osmostress protectants. The EctABC enzymes catalyze the synthesis of ectoine from the precursor L-aspartate-β-semialdehyde. A subgroup of the ectoine producers can convert ectoine into 5-hydroxyectoine through a region-selective and stereospecific hydroxylation reaction. This compatible solute possesses stress-protective and function-preserving properties different from those of ectoine. Hydroxylation of ectoine is carried out by the EctD protein, a member of the non-heme-containing iron (II) and 2-oxoglutarate-dependent dioxygenase superfamily. We used the signature enzymes for ectoine (EctC) and hydroxyectoine (EctD) synthesis in database searches to assess the taxonomic distribution of potential ectoine and hydroxyectoine producers. Among 6428 microbial genomes inspected, 440 species are predicted to produce ectoine and of these, 272 are predicted to synthesize hydroxyectoine as well. Ectoine and hydroxyectoine genes are found almost exclusively in Bacteria. The genome context of the ect genes was explored to identify proteins that are functionally associated with the synthesis of ectoines; the specialized aspartokinase Ask_Ect and the regulatory protein EctR. This comprehensive in silico analysis was coupled with the biochemical characterization of ectoine hydroxylases from microorganisms that can colonize habitats with extremes in salinity (Halomonas elongata), pH (Alkalilimnicola ehrlichii, Acidiphilium cryptum), or temperature (Sphingopyxis alaskensis, Paenibacillus lautus) or that produce hydroxyectoine very efficiently over ectoine (Pseudomonas stutzeri). These six ectoine hydroxylases all possess similar kinetic parameters for their substrates but exhibit different temperature stabilities and differ in their tolerance to salts. We also report the crystal structure of the Virgibacillus salexigens EctD protein in its apo-form, thereby revealing that the iron-free structure exists already in a pre-set configuration to incorporate the iron catalyst. Collectively, our work defines the taxonomic distribution and salient biochemical properties of the ectoine hydroxylase protein family and contributes to the understanding of its structure.  相似文献   

6.
Summary The aim of this study was to elucidate the protective effect of the new compatible solutes, ectoine and hydroxyectoine, on two sensitive enzymes (lactic dehydrogenase, phosphofructokinase). The solutes tested also included (for reasons of comparison) other compatible solutes such as glycine betaine and a number of disaccharides (sucrose, trehalose, maltose). All compatible solutes under investigation displayed remarkable stabilizing capabilities. However, the degree of protection depended on both the type of solute chosen and the enzyme used as a test system. The most prominent protectants were trehalose, ectoine and hydroxyectoine, which are very often found in nature (singly or in combinationn) as part of the compatible solute cocktail of moderately halophilic eubacteria. Offprint request to: E. A. Galinski  相似文献   

7.

Background  

Osmosensing and associated signal transduction pathways have not yet been described in obligately halophilic bacteria. Chromohalobacter salexigens is a halophilic bacterium with a broad range of salt tolerance. In response to osmotic stress, it synthesizes and accumulates large amounts of the compatible solutes ectoine and hydroxyectoine. In a previous work, we showed that ectoines can be also accumulated upon transport from the external medium, and that they can be used as carbon sources at optimal, but not at low salinity. This was related to an insufficient ectoine(s) transport under these conditions.  相似文献   

8.
Compatible solutes are small organic osmoprotectants that have the capability to stabilize proteins. In coupled assays, the effect of the solutes ectoine, hydroxyectoine and betaine on the activation of the zymogens trypsinogen and chymotrypsinogen, catalyzed by enteropeptidase and trypsin, respectively, was studied. To different extents, all solutes protected the zymogens against activation. Ectoine (800 mM) was the most potent solute in reducing the formation of trypsin to 4% of the control value and of chymotrypsin to 23%. In separate experiments, the ability of the solutes to preserve proteolytic activity during incubation was investigated. After 4 h, trypsin and chymotrypsin completely lost their activity, but in the presence of ectoine, approximately 50% residual activity was maintained. It is proposed that a conformational shift of the protein towards folded, native-like states induced by preferential exclusion of the solute is responsible for the stabilizing and chaperone-like effects.  相似文献   

9.
The protection of mannosylglycerate, at 0.5 M concentration, against heat inactivation of the model enzyme lactate dehydrogenase (LDH) was compared to that exerted by other compatible solutes, namely, trehalose, ectoine, hydroxyectoine, di- myo-inositol phosphate, diglycerol phosphate, and mannosylglyceramide. Mannosylglycerate and hydroxyectoine were the best stabilizers of the enzyme and showed comparable protective effects. Diglycerol phosphate, trehalose, and mannosylglyceramide protected the enzyme to a lower extent. Ectoine conferred no protection, and di- myo-inositol phosphate had a strong destabilizing effect. The superior ability of mannosylglycerate to prevent LDH inactivation was accompanied by a higher efficiency in preventing LDH aggregation induced by heat stress. Moreover, mannosylglycerate induced an increase of 4.5 degrees C in the melting temperature of LDH, whereas the same molar concentration of trehalose caused an increase of only 2.2 degrees C. The effectiveness of mannosylglycerate in protecting LDH was also compared to that of other chemically related compounds: mannose, methyl-mannoside, potassium glycerate, glucosylglycerol, glycerol, and glucose. Mannosylglycerate conferred the highest protection, but glucosylglycerol and potassium glycerate were very efficient; glucose exerted a low degree of protection, glycerol and methyl-mannoside had no significant effect, and mannose caused destabilization. Mannosylglycerate was also a good thermoprotectant of glucose oxidase from Aspergillus niger, an enzyme with a net charge opposite to that of LDH under the working conditions. Given the superior performance of mannosylglycerate as a thermoprotectant of enzyme activity in vitro, it is conceivable that it also fulfills a protein thermoprotective function in vivo.  相似文献   

10.
【背景】四氢嘧啶类物质在高温、冷冻和干燥等逆境条件下,对酶、蛋白质、核酸及整个细胞具有良好的保护作用,已经应用于酶制剂、生物医药及护肤品等相关领域。目前此类物质只能依赖中度嗜盐菌采用细菌泌乳工艺进行商业化生产,因此四氢嘧啶类高产菌株及其发酵技术的研究日益受到国内外研究者关注。【目的】分离获得高产合成四氢嘧啶类相容性溶质的中度嗜盐细菌,研究渗透压冲击对其胞内四氢嘧啶合成与释放的影响,探索细菌泌乳法制备四氢嘧啶的可行性。【方法】采用涂布平板法分离中度嗜盐菌,对分离菌株进行形态、生理生化和16S rRNA基因序列分析,鉴定其种属;采用高效液相色谱法(HPLC)和质谱法(MS)分析四氢嘧啶类物质,细菌泌乳法制备四氢嘧啶类物质。【结果】从盐池土样中分离到一株以四氢嘧啶类物质为主要相容性溶质的中度嗜盐菌Y,鉴定为盐单胞菌(Halomonas sp.)Y。盐单胞菌Y能在NaCl质量浓度为10-250 g/L的培养基中生长,最适生长的NaCl浓度为100 g/L;HPLC-MS测试结果证明盐单胞菌Y可同时合成四氢嘧啶和羟基四氢嘧啶2种相容性溶质,在最适生长的盐浓度下其合成量分别达175.5 mg/g和47.9 mg/g;在NaCl质量浓度为0-30 g/L的低渗溶液中胞内四氢嘧啶类物质经5 min即可达到最大释放率,而细菌泌乳工艺中最适合诱导四氢嘧啶释放的低渗溶液为质量浓度为10 g/L的NaCl溶液;采用细菌泌乳工艺制备四氢嘧啶,经连续11轮的高渗/低渗冲击,四氢嘧啶总合成量为6.0 g/L,总释放量为5.7 g/L,平均释放率为64.5%,底物转化率为128.9 mg/g。【结论】盐单胞菌Y是一株较高产合成四氢嘧啶类的中度嗜盐菌,能够耐受反复的渗透压冲击,采用细菌泌乳工艺显著提高了四氢嘧啶的制备效率。  相似文献   

11.
The synthesis and secretion of the industrial relevant compatible solutes ectoine and hydroxyectoine using the halophile bacterium Chromohalobacter salexigens were studied and optimized. For this purpose, a cascade of two continuously operated bioreactors was used. In the first bioreactor, cells were grown under constant hyperosmotic conditions and thermal stress driving the cells to accumulate large amounts of ectoines. To enhance the overall productivity, high cell densities up to 61 g L?1 were achieved using a cross‐flow ultrafiltration connected to the first bioreactor. In the coupled second bioreactor the concentrated cell broth was subjected to an osmotic and thermal down‐shock by addition of fresh distilled water. Under these conditions, the cells are forced to secrete the accumulated intracellular ectoines into the medium to avoid bursting. The cultivation conditions in the first bioreactor were optimized with respect to growth temperature and medium salinity to reach the highest synthesis (productivity); the second bioreactor was optimized using a multi‐objective approach to attain maximal ectoine secretion with simultaneous minimization of cell death and product dilution caused by the osmotic and thermal down‐shock. Depending on the cultivation conditions, intracellular ectoine and hydroxyectoine contents up to 540 and 400 mg per g cell dry weight, respectively, were attained. With a maximum specific growth rate of 0.3 h?1 in defined medium, productivities of approximately 2.1 g L?1 h?1 secreted ectoines in continuous operation were reached. Biotechnol. Bioeng. 2010;107: 124–133. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
13.
Xanthomonas axonopodis pv. punicae strain—a potent plant pathogen that causes blight disease in pomegranate—was screened for cellulolytic and xylanolytic enzyme production. This strain produced endo-β-1,4-glucanase, filter paper lyase activity (FPA), β-glucosidase and xylanase activities. Enzyme production was optimized with respect to major nutrient sources like carbon and nitrogen. Carboxy methyl cellulose (CMC) was a better inducer for FPA, CMCase and xylanase production, while starch was found to be best for cellobiase. Soybean meal/yeast extract at 0.5 % were better nitrogen sources for both cellulolytic and xylanolytic enzyme production while cellobiase and xylanase production was higher with peptone. Surfactants had no significant effect on levels of extracellular cellulases and xylanases. A temperature of 28 °C and pH 6–8 were optimum for production of enzyme activities. Growth under optimized conditions resulted in increases in different enzyme activities of around 1.72- to 5-fold. Physico-chemical characterization of enzymes showed that they were active over broad range of pH 4–8 with an optimum at 8. Cellulolytic enzymes showed a temperature optimum at around 55 °C while xylanase had highest activity at 45 °C. Heat treatment of enzyme extract at 75 °C for 1 h showed that xylanase activity was more stable than cellulolytic activities. Xanthomonas enzyme extracts were able to act on biologically pretreated paddy straw to release reducing sugars, and the amount of reducing sugars increased with incubation time. Thus, the enzymes produced by X. axonopodis pv. punicae are more versatile and resilient with respect to their activity at different pH and temperature. These enzymes can be overproduced and find application in different industries including food, pulp and paper and biorefineries for conversion of lignocellulosic biomass.  相似文献   

14.
Five different compatible solutes, sucrose, trehalose, hydroxyectoine, ectoine, and glycine betaine, were investigated for their protective effect on Escherichia coli K12 and E. coli NISSLE 1917 during drying and subsequent storage. Two different drying techniques, freeze-drying and air-drying, were compared. The highest survival rate was observed when the non-reducing disaccharides sucrose (for E. coli K12) and trehalose (for E. coli NISSLE 1917) were added. The two tetrahydropyrimidines, hydroxyectoine and ectoine, gave protection to freeze-dried E. coli NISSLE 1917 whereas E. coli K12 was protected only by hydroxyectoine. Glycine betaine seemed to be harmful for both strains of E. coli with both drying techniques. Air0drying gave much better survival rates than freeze-drying. The two strains of E. coli differed in their ability to take up compatible solutes.  相似文献   

15.
Xylanase produced from the isolated bacterial strain Bacillus sp. SV-34S showed a 8.74-fold increase in enzyme activity under optimized submerged fermentation conditions. Cultivation using wheat bran as the carbon source and beef extract and (NH4)H2PO4 as the nitrogen source resulted in productivity of 3,454.01 IU/mL xylanase. Xylanase was purified by 12.94-fold, with a recovery of 13.4 % and a specific activity of 3417.2 IU/mg protein, employing ammonium sulphate fractionation followed by cation-exchange chromatography using CM-Sephadex C-50 column chromatography, with a product of 27 kDa. The purified xylanase showed an optimum temperature and pH of 50 °C and 6.5, respectively although it was active even at pH 11.0. The thermostability study revealed that Bacillus sp. SV-34S was thermotolerant, being stable up to 50 °C; the residual activity at 55 and 60 °C was 96 and 93 %, respectively. The enzyme was stable between pH 6.0 and 8.0, although it retained >100 % activity at pH 8.0 and 9.0, respectively, following pre-incubation for 24 h. Xylanase activity was inhibited by various metal ions added to the assay mixture, with maximum inhibition observed in the presence of HgCl2. The Km and Vmax values of the purified xylanase using birch wood xylan as substrate were 3.7 mg/mL and 133.33 IU/mL, respectively. The isolated bacterial strain produced high levels of extremophilic cellulase-free xylanase. The fact that it can be used in crude form and that it can be produced cheaply with renewable carbon sources make the process economically feasible. The characteristics of the purified enzyme suggest its potential application in industries such as the paper and pulp industry.  相似文献   

16.
Strain CHR63 is a salt-sensitive mutant of the moderately halophilic wild-type strain Halomonas elongata DSM 3043 that is affected in the ectoine synthase gene (ectC). This strain accumulates large amounts of Ngamma-acetyldiaminobutyrate (NADA), the precursor of ectoine (D. Cánovas, C. Vargas, F. Iglesias-Guerra, L. N. Csonka, D. Rhodes, A. Ventosa, and J. J. Nieto, J. Biol. Chem. 272:25794-25801, 1997). Hydroxyectoine, ectoine, and glucosylglycerate were also identified by nuclear magnetic resonance (NMR) as cytoplasmic organic solutes in this mutant. Accumulation of NADA, hydroxyectoine, and ectoine was osmoregulated, whereas the levels of glucosylglycerate decreased at higher salinities. The effect of the growth stage on the accumulation of solutes was also investigated. NADA was purified from strain CHR63 and was shown to protect the thermolabile enzyme rabbit muscle lactate dehydrogenase against thermal inactivation. The stabilizing effect of NADA was greater than the stabilizing effect of ectoine or potassium diaminobutyrate. A (1)H NMR analysis of the solutes accumulated by the wild-type strain and mutants CHR62 (ectA::Tn1732) and CHR63 (ectC::Tn1732) indicated that H. elongata can synthesize hydroxyectoine by two different pathways-directly from ectoine or via an alternative pathway that converts NADA into hydroxyectoine without the involvement of ectoine.  相似文献   

17.
The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin) under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C), betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C), firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account.  相似文献   

18.
beta-Amyloid peptide (Abeta) is the major constituent of senile plaques, the key pathological feature of Alzheimer's disease. Abeta is physiologically produced as a soluble form, but aggregation of Abeta monomers into oligomers/fibrils causes neurotoxic change of the peptide. In nature, many microorganisms accumulate small molecule chaperones (SMCs) under stressful conditions to prevent the misfolding/denaturation of proteins and to maintain their stability. Hence, it is conceivable that SMCs such as ectoine and hydroxyectoine could be potential inhibitors against the aggregate formation of Alzheimer's Abeta, which has not been studied to date. The current work shows the effectiveness of ectoine and hydroxyectoine on the inhibition of Abeta42 aggregation and toxicity to human neuroblastoma cells. The characterization tools used for this study include thioflavin-T induced fluorescence, atomic force microscopy and cell viability assay. Considering that ectoine and hydroxyectoine are not toxic to cellular environment even at concentrations as high as 100 mM, the results may suggest a basis for the development of ectoines as potential inhibitors associated with neurodegenerative diseases.  相似文献   

19.
Stable immunoconjugates were prepared in the presence of 400 mM trehalose. Their residual activity after freeze-drying, rehydration and incubation for 9 h at 40?°C was 35%. Freeze-dried conjugates containing 400 mM trehalose incubated at 40?°C for 4 days retained 80% of their original activity.  相似文献   

20.
Strain CHR63 is a salt-sensitive mutant of the moderately halophilic wild-type strain Halomonas elongata DSM 3043 that is affected in the ectoine synthase gene (ectC). This strain accumulates large amounts of Nγ-acetyldiaminobutyrate (NADA), the precursor of ectoine (D. Cánovas, C. Vargas, F. Iglesias-Guerra, L. N. Csonka, D. Rhodes, A. Ventosa, and J. J. Nieto, J. Biol. Chem. 272:25794–25801, 1997). Hydroxyectoine, ectoine, and glucosylglycerate were also identified by nuclear magnetic resonance (NMR) as cytoplasmic organic solutes in this mutant. Accumulation of NADA, hydroxyectoine, and ectoine was osmoregulated, whereas the levels of glucosylglycerate decreased at higher salinities. The effect of the growth stage on the accumulation of solutes was also investigated. NADA was purified from strain CHR63 and was shown to protect the thermolabile enzyme rabbit muscle lactate dehydrogenase against thermal inactivation. The stabilizing effect of NADA was greater than the stabilizing effect of ectoine or potassium diaminobutyrate. A 1H NMR analysis of the solutes accumulated by the wild-type strain and mutants CHR62 (ectA::Tn1732) and CHR63 (ectC::Tn1732) indicated that H. elongata can synthesize hydroxyectoine by two different pathways—directly from ectoine or via an alternative pathway that converts NADA into hydroxyectoine without the involvement of ectoine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号