首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopaminergic D2 receptor agonists, such as bromocriptine, are potent anti-proliferative agents in the treatment of human pituitary adenomas. We have reproduced the anti-proliferative effect of dopamine in an established pituitary cell line stably transfected with the rat D2 dopamine receptor cDNA. We found that dopaminergic inhibition of DNA synthesis parallels the stimulation of a phosphotyrosine phosphatase activity. Both actions are blocked by pertussis toxin and by the phosphotyrosine phosphatase inhibitor, vanadate. We suggest that the anti-proliferative action of dopamine is mediated, at least in part, by the dopaminergic stimulation of a phosphotyrosine phosphatase.  相似文献   

2.
The postnatal vertebrate eye lens provides an opportunity to study possible involvement of reversible protein phosphorylation in the differentiation process of epithelial cells. Epithelial cells at the lens equator, indeed, differentiate continuously into fiber cells throughout life but this capacity progressively decreases with age. Here we describe the characterization of a phosphotyrosine-protein phosphatase(s) (PTPase(s)) in the equatorial epithelium of bovine lens which exhibits a high level of specific activity. PTPase(s) is detected in cellular detergent extracts using phospholabeled synthetic peptides, p-nitrophenyl phosphate, and lens epithelial membranes as substrates. We show that activity of this PTPase(s) is increased in the equatorial epithelium as the age is increased. We also show that this enzyme(s) exerts its dephosphorylating activity predominantly on a calpactin-like protein associated with lens epithelial membranes. Dephosphorylation of this protein is only obtained when membranes are subjected to extracts in the presence of fibroblast growth factor (FGF). It is suggested that an FGF-activated PTPase(s) might conceivably counteract effects of differentiation stimulatory factors for limiting differentiation of lens throughout life. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Fibroblast growth factor receptor (class IV) shares a certain degree of similarity with class III members like platelet-derived growth factor and macrophage-colony-stimulating factor receptors, which, once activated, are substrates of low M(r) phosphotyrosine protein phosphatase. Up until now no phosphotyrosine phosphatase has been shown to act on this receptor in vivo. Here we demonstrate that low M(r) phosphotyrosine protein phosphatase is able to reduce receptor tyrosine phosphorylation and cell proliferation in response to basic fibroblast growth factor. Contrary to what was previously observed for platelet-derived growth factor, during cell stimulation with basic fibroblast growth factor, no enzyme redistribution among cellular compartments is observed.  相似文献   

4.
Incubation of human or sheep platelet crude membranes with xanthine oxidase/hypoxanthine in the presence of Fe2+/ADP inactivated phosphotyrosine phosphatase (PTPase, protein-tyrosine-phosphate-phosphohydrolase, EC 3.1.3.48) activity in a time-dependent manner, this inhibition being significant within 5 min of treatment. The dynamics of protein thiols differed depending on the platelet species, but in any case decreases in protein thiols were only visible 20-45 min after the start of the treatment. The inhibition of PTPase activity in general showed good a correlation with the production of thiobarbituric acid-reactive substances (TBARS). The results with several antioxidants suggest that the inhibition of PTPase activity is related to the generation of alkoxyl and/or peroxyl radicals. Furthermore, the formation of fluorescent products and changes in amino groups were observed only after long incubation times with the oxidizing agents, these fluorescent products and the residual enzyme activity remaining in the membrane fraction. Treatment of platelet membranes with trans-2-nonenal and n-heptaldehyde, but not with acetaldehyde, also inhibited membrane-associated PTPase activity. However, the amount of protein thiols was reduced only by treatment with trans-2-nonenal. Fluorescence product formation was always higher with trans-2-nonenal, these products being mainly located in the protein fraction. The results with aldehydes suggest that secondary degraded products of lipid hydroperoxides affect PTPase activity. Kinetic studies of PTPase activity indicated that with all treatments enzyme inhibition is mainly due to a decrease in the Vmax value. The results of fluorescence anisotropy measurements of labeled platelet membranes did not support the notion of a contribution of the lipid organization to peroxidation-mediated PTPase inhibition. All the above results indicate that platelet membrane-associated PTPase inhibition due to treatment with xanthine oxidase/ hypoxanthine in the presence of Fe2+/ADP is a very complex, time-dependent process, and that it is probably related, at least after long periods of peroxidation, to changes in protein thiols and amino groups. We predict that the sensitivity of PTPase to lipid peroxidation must be physiologically relevant because of the increasing importance of tyrosine phosphorylation in signal transduction, in general, and in platelet activation and aggregation in particular.  相似文献   

5.
6.
Human placental alkaline phosphatase, a marker protein for some nontrophoblastic neoplasms, was found to have phosphoprotein phosphatase activity. This was demonstrated by the dephosphorylation of 32P-labeled histones, protamine, glycogen synthetase, casein, and phosvitin at various pH values. Unlike the general phosphoprotein phosphatase, the placental alkaline phosphatase does not have phosphorylase a phosphatase activity.  相似文献   

7.
A preparation of purified mu opioid receptor from bovine brain hydrolyzes p-nitrophenylphosphate. This phosphatase activity has a pH optimum of 9.0, a Km of 9.0 microM, and is stimulated by Mn++ and Mg++ ions. Evidence that the observed activity is not due to a contaminant in the opioid receptor preparation includes 1) the activity is associated primarily with 60,000 molecular weight material which is much smaller than bovine brain alkaline phosphatase; and 2) the activity could not be absorbed by antibodies specific for bovine alkaline phosphatase. Thus this appears to be the first demonstration of enzymatic activity associated with an opioid receptor.  相似文献   

8.
Activity of phosphotyrosine - protein phosphatases (PTPases) has been investigated in the different cellular regions of bovine eye lens. PTPases were tested in cellular detergent extracts using phospholabelled synthetic peptides and p-nitrophenyl phosphate. We show that a high PTPase activity is only present in cells which undergo differentiation, namely the equatorial epithelium and cortex fiber cells. Since this activity is found to be severely inhibited by a specific inhibitor of receptor - type PTPases, it can be suggested that one or more members of this class of PTPases might play an important role in the lens differentiation process.  相似文献   

9.
Human red cell cytosol acid phosphatase activity is supported by a main enzyme which can be extracted by DEAE and phosphocellulose chromatography. It uses pNPP as a substrate and is a protein phosphatase specific to phosphotyrosine. It dephosphorylates the tyrosine-phosphorylated cytosolic fragment of membrane protein 3. When taken together, these results suggest that the physiological role of red cell acid phosphatase is the FB3 phosphotyrosine dephosphorylation. Whatever it may be phosphotyrosine protein phosphatase activity is the first role of red cell acid phosphatase to be demonstrated.  相似文献   

10.
A preliminary characterization of the protein phosphotyrosine phosphatase (PT-Pase) activity in human peripheral blood lymphocytes (PBL) has been made using two tyrosine-containing peptides and the epidermal growth factor receptor from A-431 cells as substrates. High PTPase activity with a pH optimum near 7.4 was observed in both the membrane and the cytosolic fractions. At least three distinct fractions with PTPase activity were separated on DEAE cellulose columns, indicating that the enzyme is heterogeneous. Vanadate, molybdate, and salts of zinc, copper, and mercury were all effective enzyme inhibitors, although the inhibition was generally incomplete and showed some variation with the enzyme preparation. The difficulty in completely inhibiting PTPase activity in lymphocytes may help explain the variation between laboratories in studies of tyrosine phosphorylation in these cells. Studies with highly purified T lymphocytes obtained by filtration of PBL through nylon wool columns indicated that the activity is present in T cells. Absorption with agarose containing anti-HLe-I, a mouse monoclonal lgGi antibody specific for the leukocyte-specific surface protein T-200 (CD45), removed up to 40% of the PTPase activity. Enzyme activity was recovered on the immunoadsorbent after extensive washing, confirming that the enzyme was being bound to the beads. Immunoabsorbents containing other mouse lgGi antibodies failed to bind PTPase activity, indicating that the binding to beads with anti-HLe-I antibody is specific. Further characterization of the CD45 and PTPase activities in lymphocytes may provide a better under standing of the role of protein tyrosine phosphorylation in the regulation of proliferation and differentiation in these cells.  相似文献   

11.
Rat liver plasma membranes were found to have a relatively high ratio of acid to alkaline phosphatase activity when compared to rabbit liver and human placental membranes, respectively. The rat liver plasma membranes contained PPTl phosphatase activity against the soluble autophosphorylated insulin receptor beta-subunit. The PPT phosphatase activity of the membranes, using 32P-histone 2b as a substrate, was inhibited by 100 microM Zn+2, insensitive to 10 mM EDTA, and displayed maximal activity at neutral pH. Dephosphorylation of the insulin receptor beta-subunit by rat liver membranes was inhibited by Zn+2, and stimulated by EDTA. These results prove that the plasma membrane of a physiologically relevant insulin target tissue contains a PPT phosphatase, distinct from alkaline phosphatase, which catalyzes the dephosphorylation of the insulin receptor beta-subunit.  相似文献   

12.
Dawson G  Kilkus J  Schieven GL 《FEBS letters》2000,478(3):233-236
Bis(maltolato)oxovanadium(IV) (BMOV), a protein phosphotyrosine phosphatase inhibitor, selectively induced apoptosis (as quantitated by TUNEL staining) in a B-cell line (Ramos) but not in a T-cell line (Jurkat). The pattern of BMOV-induced protein tyrosine phosphorylation was different in B-cells versus T-cells. Further, BMOV induced a 2-fold increase in ceramide levels in B-cells but not in T-cells and this resembled the ceramide increase following activation of the B-cell antigen receptor. A 2-fold increase in the ratio of ceramide to sphingomyelin in B-cells treated with BMOV suggested that sphingomyelinase activation was the result of the sustained tyrosine phosphorylation of specific proteins and activated the cell death pathway.  相似文献   

13.
Gamma-secretase is a high molecular weight multicomponent protein complex with an unusual intramembrane-cleaving aspartyl protease activity. Gamma-secretase is intimately associated with Alzheimer disease because it catalyzes the proteolytic cleavage, which leads to the liberation of amyloid beta-peptide. At least presenilin (PS), Nicastrin (Nct), APH-1, and PEN-2 are constituents of the gamma-secretase complex, with PS apparently providing the active site of gamma-secretase. Expression of gamma-secretase complex components is tightly regulated, however little is known about the assembly of the complex. Here we demonstrate that Nct undergoes a major conformational change during the assembly of the gamma-secretase complex. The conformational change is directly associated with gamma-secretase function and involves the entire Nct ectodomain. Loss of function mutations generated by deletions failed to undergo the conformational change. Furthermore, the conformational alteration did not occur in the absence of PS. Our data thus suggest that gamma-secretase function critically depends on the structural "activation" of Nct.  相似文献   

14.
We have studied the effect of insulin stimulation on phosphotyrosine phosphatase (PTPase) activity in the well-differentiated rat hepatoma cell line Fao. PTPase activity was measured using a 32P-labeled peptide corresponding to the major site of insulin receptor autophosphorylation. Of the PTPase activity in Fao cells, 14% was in the cytosolic fraction, whereas 86% was in the particulate fraction; this latter fraction also had a 4-fold higher specific activity. Purification of the particulate fraction by lectin chromatography resulted in a 50% increase in specific activity, although this glycoprotein-rich fraction contained only 1.5% of the total activity. Both the cytosolic and particulate PTPase fractions were active toward the tyrosyl-phosphorylated insulin receptor in vitro. The activity of the particulate fraction but not the cytosolic fraction was inhibited by addition of a micromolar concentration of a phosphorylated peptide corresponding to residues 1142-1153 of the human insulin receptor sequence. By contrast, addition of the nonphosphorylated peptide even at millimolar concentration was without effect. Both PTPase fractions were inhibited by Zn+ at similar concentrations, whereas the cytosolic PTPase activity was 10-fold more sensitive to vanadate inhibition. Treatment of cells with 100 nM insulin increased PTPase activity in the particulate fraction by 40% and decreased activity in the cytosolic fraction by 35%. These effects occurred within 15 min and were half-maximal at 3-4 nM insulin. When assessed as total activity, the magnitude of the changes in PTPase activity in the particulate and cytosolic fractions could not be explained on the basis of a translocation of PTPases between the two pools.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Intestinal alkaline phosphatase (IAP) is one of the major sources of alkaline phosphatase in circulation. It is secreted into the intestinal lumen, serum, and lymph. After the ingestion of lipid, lymphatic alkaline phosphatase secretion increases significantly. We have found that the nonabsorbable fat olestra is unable to stimulate lymphatic alkaline phosphatase secretion. We also found that the hydrophobic surfactant Pluronic L-81, which blocks chylomicron formation, fails to inhibit this increase in lymphatic alkaline phosphatase secretion. These results suggest that it is the lipid uptake into the mucosa and/or reesterification to form triacylglycerols, but not the formation of chylomicrons, that is necessary for the stimulation of the secretion of alkaline phosphatase into the lymph.  相似文献   

16.
Using [32P]P-Tyr-IgG and [32P]P-Tyr-casein phosphorylated by pp60v-src as substrates, studies on the phosphotyrosyl-protein phosphatase activity in human prostate gland indicate that it is associated with prostatic acid phosphatase. Evidence to support this conclusion include the following: (a) these two enzymatic activities co-purify to apparent homogeneity; (b) they co-migrated on polyacrylamide gel electrophoresis, ion-exchange and gel filtration chromatographies; (c) the exhibit identical thermostability; and (d) the phosphotyrosyl-protein phosphatase activity is sensitive to inhibition by p-nitrophenyl phosphate and by several classical inhibitors of prostatic acid phosphatase including L(+)-tartrate, molybdate, vanadate and NaF. The purified enzyme exhibits high specificity towards phosphotyrosyl-proteins with little activity towards several phosphoseryl-proteins and phosphothreonyl-proteins examined. The present findings indicate that prostatic acid phosphatase may function in vivo as a phosphotyrosyl-protein phosphatase.  相似文献   

17.
T R Green  D E Wu 《FEBS letters》1985,179(1):82-86
At approximately equimolar concentrations (approximately 70 microM), and in the presence of excess catalase and superoxide dismutase, DCIP, ferricytochrome c and ferricyanide abstracted 21, 6 and 61%, respectively, of the electron equivalents given up by NADPH to the NADPH-O2 oxidoreductase complex derived from phorbol myristate acetate-stimulated human neutrophils. With a 10-fold increase in ferricyanide, all of the electron equivalents given up by NADPH to the oxidoreductase complex were shunted to ferricyanide concomitant with complete inhibition of NADPH-dependent O2 consumption. These results substantiate the existence of intrinsic diaphorase activity associated with the superoxide generating NADPH-O2 oxidoreductase of human neutrophils.  相似文献   

18.
The NAD+ glycohydrolase activity of cholera-toxin samples can be separated from their adenylate cyclase-activating activity by polyacrylamide-gel electrophoresis and is inhibited by sodium dodecyl sulphate (which does not inhibit the action of toxin on cells), but not by antibodies to pure toxin. It is therefore probably not a true property of the toxin.  相似文献   

19.
In cultured amniotic cells from fetuses with Edward's syndrome (trisomy 18), the activities of two protein phosphatases, alkaline phosphatase and phosphotyrosine phosphatase, were measured. Comparison with normal fetal cells showed a different behavior for each enzyme. Alkaline phosphatase was significantly lowered while phosphotyrosine phosphatase remained at normal levels. The interest of these enzyme assays in the screening procedure of this severe chromosome defect is discussed.  相似文献   

20.
A [phosphotyrosine]protein phosphatase (PTPPase) was purified almost to homogeneity from rat brain, with [32P]p130gag-fps, an oncogene product of Fujinami sarcoma virus, as substrate. The characteristics of the purified preparation of PTPPase were as follows: the enzyme was a monomer with a molecular mass of 23 kDa; its optimum pH was 5.0-5.5; its activity was not dependent on bivalent cations; its activity was strongly inhibited by sodium vanadate, but was not inhibited by ZnCl2, L(+)-tartrate or NaF; it catalysed the dephosphorylation of [32P]p130gag-fps, [[32P]Tyr]casein, p-nitrophenyl phosphate and L-phosphotyrosine, but did not hydrolyse [[32P]Ser]tubulin, L-phosphoserine, DL-phosphothreonine, 5'-AMP, 2'-AMP or beta-glycerophosphate significantly. During the purification, most of the PTPPase activity was recovered in distinct fractions from those of conventional low-molecular-mass acid phosphatase (APase), which was reported to be a major PTPPase [Chernoff & Li (1985) Arch. Biochem. Biophys. 240, 135-145], from DE-52 DEAE-cellulose column chromatography, and those two enzymes could be completely separated by Sephadex G-75 column chromatography. APase also showed PTPPase activity with [32P]p130gag-fps, but the specific activity was lower than that of PTPPase with molecular mass of 23 kDa, and it was not sensitive to sodium vanadate. These findings suggested that PTPPase (23 kDa) was the major and specific PTPPase in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号