首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
银杏愈伤组织的形成及其中黄酮类化合物的产生   总被引:7,自引:0,他引:7  
单一激素种类对银杏叶片,叶柄和幼茎愈伤组织的诱导中以NAA的效果最佳,2,4-D次之,6-BA最差,除胚乳外,胚,幼苗的胚根,子叶,幼茎,叶片和叶柄,以及成年树的嫩茎,叶片和叶柄各外植体在本试验条件下都能诱发愈伤组织,其中胚,子叶和叶柄的愈伤组织形成频率均可达到100.0%,叶片和幼茎在光照下的愈伤组织诱导频率比黑暗中的略高,而叶柄和胚根则相反,MS和DCR两种培养基都适合银杏幼苗叶片及叶柄愈伤组织的诱导,两者之间不存显著性差异,测得光照培养的3个组织系(ST1,ST2,ST3)中均含银杏黄酮甙元槲皮素,山柰素和异鼠李素,总含量分别为干重的0.35%,0.29%和0.14%,而黑暗中培养的这3个愈伤组织系则没有银杏黄酮的产生。  相似文献   

2.
Variation in resistance of xylem to embolism among flowers, leaves, and stems strongly influences the survival and reproduction of plants. However, little is known about the vulnerability to xylem embolism under drought stress and their relationships to the anatomical traits of pits among reproductive and vegetative organs. In this study, we investigated the variation in xylem vulnerability to embolism in peduncles, petioles, and stems in a woody plant, Magnolia grandiflora. We analyzed the relationships between water potentials that induced 50% embolism (P50) in peduncles, petioles, and stems and the conduit pit traits hypothesized to influence cavitation resistance. We found that peduncles were more vulnerable to cavitation than petioles and stems, supporting the hypothesis of hydraulic vulnerability segmentation that leaves and stems are prioritized over flowers during drought stress. Moreover, P50 was significantly correlated with variation in the dimensions of inter-vessel pit apertures among peduncles, petioles and stems. These findings highlight that measuring xylem vulnerability to embolism in reproductive organs is essential for understanding the effect of drought on plant reproductive success and mortality under drought stress.  相似文献   

3.
We studied the diet and food choice of 1 group of Fran?ois’ langurs (Trachypithecus francoisi) from August 2003 to July 2004 in the Nonggang Nature Reserve, Guangxi province, China. The langurs consumed 90 plant species, including 14 unidentified species. Leaves constituted 52.8% of the diet (38.9% young leaves and 13.9% mature leaves). Fruits and seeds accounted for 17.2% and 14.2%, respectively. Flowers and other items—including petioles, stems, roots, and bark—contributed to 7.5% and 7.4% of the diet, respectively. The langur diet varied according to season. They fed on more young leaves from April to September. Consumption of seeds, petioles, and stems increased between October and March, when young leaves were scarce. The diet shift corresponded to higher dietary diversity during the young leaf-lean period. Though the langurs fed on many plant species, 10 species accounted for 62.2% of the diet, only 2 of which were among the 10 most common tree species in vegetation quadrants, and the percentage of feeding records on a plant species and the percentage of individuals of the species in vegetation quadrants does not correlate significantly. Fran?ois’ langurs fed selectively, and they did not base their diet simply on the abundance of plant species in the habitat.  相似文献   

4.
During decomposition, petioles and leaf blades of Nymphoides indica (L.) O. Kuntze and stems and leaves of Polygonum ferrugineum Wedd. from the Lobo Reservoir, Sao Paulo, Brazil, showed an initial phase (first seven days) of loss of dry weight, soluble carbohydrates, lipids, polyphenols, phosphorus, potassium and ash content. In both species, the decomposition of leaves and leaf blades was faster than that of stems and petioles. At the end of the experiment (after 149 days) leaf blades of N. indica had lost 98% of the initial dry weight. Except for nitrogen and ash, which increased, all the other components showed two distinct phases during the process with intensive loss during the initial phase and a gradual and reduced loss during the longer second phase.The nutritional value of the detritus and the consequence of nutrient re-cycling in the metabolism of Lobo Reservoir are discussed.  相似文献   

5.
Methyl jasmonate (JA-Me) at concentrations of 0.1, 0.5 and 1.0 % (w/w) greatly stimulated anthocyanins accumulation in shoots of young plants of Kalanchoe blossfeldiana when it was applied around the stem as a lanolin paste. Stimulatory effect of JA-Me was evidently observed as early as two days after treatment. Anthocyanins were formed in the main and lateral shoots, including petioles, both below and above portions of the treatment. When leaves were removed from the plant, almost no anthocyanin formation was observed. It should be mentioned that leaves are necessary for the anthocyanin accumulation in stems induced by JA-Me.  相似文献   

6.
7.
Chen ZH  Walker RP  Técsi LI  Lea PJ  Leegood RC 《Planta》2004,219(1):48-58
In cucumber (Cucumis sativus L.), phosphoenolpyruvate carboxykinase (PEPCK) was shown by activity measurements and immunoblots to be present in leaves, stems, roots, flowers, fruit and seed. However, immunolocalisation showed that it was present only in certain cell types. PEPCK was present in the companion cells of the adaxial phloem of minor veins, the adaxial and abaxial phloem of larger veins, the internal and external phloem of vascular bundles in petioles and stems, the phloem in roots and the extra-fascicular phloem in leaves, cotyledons, petioles and stems. Immunohistochemical evidence suggests that both the extra-fascicular phloem and the adaxial phloem are involved in the transport of amino acids. In roots and stems, the abundance of PEPCK was greatly increased by watering plants with a solution of ammonium chloride at low, but not at high pH. PEPCK also increased in leaves, but not roots or stems, of seedlings grown in an atmosphere containing 5% CO2, and in roots and stems of seedlings watered with butyric acid. All these treatments are known to lower the pH of plant cells. Amino acid metabolism in the phloem may produce an excess of carbon skeletons, pH perturbations and an imbalance in the production/utilisation of NADH. This raises the possibility that PEPCK may function in the conversion of these carbon skeletons to PEP, which, depending on the energy requirements of the phloem, is subsequently utilised by either gluconeogenesis or the Krebs cycle, which both consume protons.Abbreviations Asp Aspartate - Asn Asparagine - Glu Glutamate - Gln Glutamine - NADP-ME NADP-malic enzyme - OAA Oxaloacetate - PEP Phosphoenolpyruvate - PEPC Phosphoenolpyruvate carboxylase - PEPCK Phosphoenolpyruvate carboxykinase  相似文献   

8.
The success of alley cropping depends to a large extent on the efficiency of transfer of nitrogen (N) from the legume hedgerow plants to the non-legume crop. Here the idea is examined that leucaena prunings (residues) can supply enough N to maize plants to significantly reduce the degree of N deficiency. Two experiments on decomposition of leucaena leaf, stem, and petiole and mineralization of N from leucaena residues were conducted in field microplots which received application of either15N-labelled leucaena materials or ammonium sulphate fertilizer. The microplots were installed in alleys formed by leucaena hedgerows spaced 4.5 metres apart and cropped with maize. The decomposition of leucaena leaves, stems and petioles was estimated by several methods. The decomposition ranged from 50–58% with leaves, 25–67% with stems and 38–51% with petioles 20 days after addition. More than 55% of the N was released in 52 days during decomposition of leucaena residues. By 20 days after application of15N-labelled leucaena 3.3–9.4% of the added15N was found in the maize plants, 32.7–49.0% was in the leucaena residues, 36.0–48.0% in the soil and 0.3–21.9% lost (deficit). By 52 days 4.8% of the15N applied in leucaena prunings was taken up by maize, 45.1% was detected in the residues, 24.9% in the soil and 25.2% lost. However, when N fertilizer was applied, 50.2% of the fertilizer N was recovered by maize, 35.5% was retained in the soil and 14.3% apparently lost. There was a marked increase in maize plant dry matter and N uptake in the microplots with addition of leucaena prunings compared with those in the microplots without leucaena added. Most of the15N remaining in the soil profile, derived from leucaena residues, was detected in the top 25 cm soil with less than 2% found below 25 cm. ei]H Lambers  相似文献   

9.
We studied temporal and spatial expression patterns of the potato proteinase inhibitor II (PI-II) promoter, using transgenic tobacco (Nkotiana tabacum L cv. Xanthi) plants that carried a fusion between the PI-II promoter and the chloramphenicol acetyltransferase (cat) gene. Pl-ll promoter activity was low when plants were young, but increased as plants grew. In 8-week-old plants, old leaves showed higher activity than young leaves. At flowering stage (ca. 15 weeks), the overall promoter activity was reduced to a lower level except in the petals. Compared with stems or petioles at the flowering stage, the roots and floral organs showed minimal activity for the Pl-ll promoter. We used several environmental stimuli to examine the induction of the Pl-ll promoter in different organs. Promoter induction was effected by wounding or methyl jasmonate in stems, petioles, sepals, and leaves. The induction was highest in leaves, as was sucrose-enhanced wound induction. These results suggest that the Pl-ll gene is temporally and spatially regulated. We also established a transient assay system in tobacco BY2 suspension cells to elucidate the upstream regulatory region of the Pl-ll promoter. A field strength of 0.75 kV/cm and 400 μF capacitance were optimal electroporation conditions for our transient assay.  相似文献   

10.
Using a conceptual model, I predicted the direction of biomass allocation and geometric responses to several environmental variables for Laportea canadensis, a clonal forb dominating the herbaceous stratum of many North American floodplain and mesic forests. Laportea stems and plants, especially dominant ones, generally (60%) respond as predicted to canopy opening, conspecific leaf area and density, and poor drainage, but are merely reduced in growth when growing on sandier soils. However, allometric relationships explain most of the variation in geometry and allocation. Still, variation in geometry and allocation (as great as among 21 species of herbs studied by Givnish [1982]), helps explain the success of Laportea in a range of microenvironments. In upland forests, stems in canopy gaps are tallest but allocate relatively less biomass to leaves than shaded stems, suggesting that interherb competition is the major problem faced under canopy gaps. Leaf morphology also changes with increasing canopy opening—individual leaves are larger, heavier, and thicker and are displayed on more steeply ascending petioles. Floodplain plants respond to light gaps mainly with changes in leaf morphology and display. With increasing conspecific density and leaf production, Laportea stems in both uplands and floodplains grow taller, allocate relatively more biomass to stems, and display leaves higher on the stem. The allocation and geometry of taller stems are more independent of density, and more closely affected by tree-canopy opening, than are small stems. Intermediate soil textures in floodplains promote maximum Laportea production; variations in other factors are less important. Poorly drained soils in floodplains (heavy-textured soils at low elevations) cause decreased Laportea height and absolute leaf weight, but increase relative allocation to leaves and roots, as predicted. On the other hand, Laportea appears poorly adapted to sandier soils. Rather than responding to sandier soils as predicted, Laportea's overall growth is reduced. Geometric responses of Laportea to environment are mediated by allometric realities: an increase in height favored in productive environments produces a concomitant decrease in relative leaf allocation. Although predicted (presumably adaptive) shifts are significant when plant size is accounted for, most of the variation in allocation and geometry is due to allometry.  相似文献   

11.
猕猴桃实生苗再生体系的建立   总被引:2,自引:0,他引:2  
以成熟饱满的美味猕猴桃种子发芽获得实生苗,分别以实生苗的茎段、叶柄和叶片为材料建立了再生体系。结果表明:种子以2.5mg/L的赤霉素(GA3)处理8h较适合;以培养基发芽较为适合;茎段、叶柄和叶片的愈伤组织的诱导率均为100%,且茎段、叶柄比叶片容易脱分化,但叶片的平均出苗率最高。再生苗在移栽5d后,开始长出新叶,10d后就能完全适应外界环境。  相似文献   

12.
A. W. Wheeler 《Planta》1971,98(2):128-135
Summary Hypocotyls of detached stems standing in culture solution produced adventitious roots sooner than did petioles of detached primary leaves. An auxin, probably indol-3-ylacetic acid, appeared in the solutions before the hypocotyls or petioles produced roots. After attaining a maximum, the amounts of auxin in the solutions decreased as fewer roots were formed. Two cytokinins were found in the culture solutions; one had a similar Rf to zeatin, the other ran more slowly on chromatograms. The amounts of cytokinin in the solutions were associated with root formation. Stems soon died unless their hypocotyls formed roots, but the primary leaves survived without roots forming provided a callus formed on the petiole. Hence adventitious roots, or callus tissues, may have produced cytokinins that replaced those produced by the original roots, found in sap exuded from the stem stumps, and were essential for survival of the stems and leaves.  相似文献   

13.
A stem blight disease was observed on the lower portions of Brassica juncea stems during the cropping season (2010–2011). In advanced stages, the lesions were up to 120 cm in length on the stems and also spread to petioles and midribs of leaves. The purified fungus was identified as Nigrospora oryzae (Berk. & Br.) Petch (teleomorph Khuskia oryzae), which produced similar symptoms when healthy B. juncea plants were inoculated, thus proving Koch's postulates. This is the first report of the occurrence of N. oryzae on B. juncea.  相似文献   

14.
Tomato (Lycopersicon esculentum) plants emit a blend of volatile organic compounds, which mainly consists of terpenes. Upon herbivory or wounding, the emission of several terpenes increases. We have identified and characterized the first two tomato monoterpene synthases, LeMTS1 and LeMTS2. Although these proteins were highly homologous, recombinant LeMTS1 protein produced (R)-linalool from geranyl diphosphate (GPP) and (E)-nerolidol from farnesyl diphosphate (FPP), while recombinant LeMTS2 produced β-phellandrene, β-myrcene, and sabinene from GPP. In addition, these genes were expressed in different tissues: LeMTS1 was expressed in flowers, young leaves, stems, and petioles, while LeMTS2 was strongest expressed in stems and roots. LeMTS1 expression in leaves was induced by spider mite-infestation, wounding and jasmonic acid (JA)-treatment, while LeMTS2 did not respond to these stimuli. The expression of LeMTS1 in stems and petioles was predominantly detected in trichomes and could be induced by JA. Because JA treatment strongly induced emission of linalool and overexpression of LeMTS1 in tomato resulted in increased production of linalool, we propose that LeMTS1 is a genuine linalool synthase. Our results underline the importance of trichomes in JA-induced terpene emission in tomato.  相似文献   

15.
It is well known that an endodermis with casparian strip always occurs in roots, but few people are aware that it also occurs in stems and leaves of some vascular plants. The rather sparse literature on endodermis in aerial organs was last included in a review in 1943. The present compilation, which does not consider hydathodes, nectaries, or other secretory structures, emphasizes distribution of cauline and foliar endodermis with casparian strip. It occurs unevenly among major taxa: quite common in rhizomes and leaves among pteridophyte groups, with exceptions; absent in gymnosperm stems but found in leaves at least among some conifers; in stems of at least 30 mostly herbaceous angiosperm families, but far less common in leaves, where it is mostly reported from petioles. Etiolation can induce casparian strips in stems and petioles of some herbaceous plants, but results from leaf blades are questionable. There are recent reports of an endodermis with casparian strip in leaves of both woody and herbaceous taxa. The physiological function, if any, of a casparian strip in aerial organs remains unknown.  相似文献   

16.
Candidatus Liberibacter asiaticus’ (CaLas), a non-cultured member of the α-proteobacteria, is the causal agent of citrus Huanglongbing (HLB). Due to the difficulties of in vitro culture, antibodies against CaLas have not been widely used in studies of this pathogen. We have used an anti-OmpA polyclonal antibody based direct tissue blot immunoassay to localize CaLas in different citrus tissues and in periwinkle leaves. In citrus petioles, CaLas was unevenly distributed in the phloem sieve tubes, and tended to colonize in phloem sieve tubes on the underside of petioles in preference to the upper side of petioles. Both the leaf abscission zone and the junction of the petiole and leaf midrib had fewer CaLas bacteria compared to the main portions of the petiole and the midribs. Colonies of CaLas in phloem sieve tubes were more frequently found in stems with symptomatic leaves than in stems with asymptomatic leaves with an uneven distribution pattern. In serial sections taken from the receptacle to the peduncle, more CaLas were observed in the peduncle sections adjacent to the stem. In seed, CaLas was located in the seed coat. Many fewer CaLas were found in the roots, as compared to the seeds and petioles when samples were collected from trees with obvious foliar symptoms. The direct tissue blot immuno assay was adapted to whole periwinkle leaves infected by CaLas. The pathogen was distributed throughout the lateral veins and the results were correlated with results of qPCR. Our data provide direct spatial and anatomical information for CaLas in planta. This simple and scalable method may facilitate the future research on the interaction of CaLas and host plant.  相似文献   

17.
Hall , John W. (U. Minnesota, Minneapolis.) Anachoropteris involuta and its attachment to a Tubicaulis type of stem from the Pennsylvanian of Iowa. Amer. Jour. Bot. 48(8): 731–737. Illus. 1961.—Petioles referable to Anachoropteris involuta are described, attached to a stem which most nearly corresponds to a member of the genus Tubicaulis. These petioles are attached in a 2/5 phyllotaxy. At their points of departure petiole traces are massive and C-shaped but become involute in regions away from their attachment. Adventitious roots were borne on the stem in partial whorls. It is suggested that Anachoropteris petioles were extremely long and that they bore adventitious stems at intervals. These, in turn, bore adventitious roots, perhaps to serve for uptake of minerals or support in regions removed from the true stem. Such a “petiole unit” may also have functioned as a vegetative propagule. This would account for the apparent rarity of true stems and the abundance of petioles in coal balls.  相似文献   

18.
Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within‐plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure‐volume relations and in situ pre‐dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50) was lost at ?2.1 to ?3.1 MPa in stems and at ?1.7 to ?2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 – stem P50) were very narrow at ?0.4 to ?1.4 MPa. Pressure‐volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem.  相似文献   

19.
Submergence stimulates elongation of the leaves of Rumex palustris and under laboratory conditions the maximum final leaf length (of plants up to 7 weeks old) was obtained within a 9 day period. This elongation response, mainly determined by petiole elongation, depends on the availability of storage compounds and developmental stage of a leaf. A starch accumulating tap root and mature leaves and petioles were found to supply elongating leaves with substrates for polysaccharide synthesis in expanding cell walls. Changes in the composition of cell wall polysaccharides of elongated petioles suggest a substantial cell wall metabolism during cell extension. Reduced starch levels or removal of mature leaves caused a substantial limitation of submerged leaf growth. From the 5th leaf onward enough reserves were available to perform submerged leaf growth from early developmental stages. Very young petioles had a limited capacity to elongate. In slightly older petioles submergence resulted in the longest final leaf lengths and these values gradually decreased when submergence was started at more mature developmental stages. Submerged leaf growth is mainly a matter of petiole elongation in which cell elongation has a concurrent synthesis of xylem elements in the vascular tissue. Mature petioles still elongated (when submerged) by cell and tissue elongation only: the annular tracheary elements stretched enabling up to 70% petiole elongation.  相似文献   

20.
Breeding for high seed protein concentration in soybean [Glycine max (L.) Merrill] often results in lower yield, but the basis for this negative relationship is not well understood. To address this question, we evaluated the N acquisition characteristics of three high protein and three normal soybean genotypes in the field for 3 years. Plants were grown in 0.76 m rows following conventional cultural practices and water stress was minimized with sprinkler irrigation. We determined the mass and N concentration of leaves, petioles and stems at the beginning of seed filling (growth stage R5) and of stems at maturity. The N concentration of abscised leaves and petioles was also determined. There was significant variation among genotypes in total seed N (g m−2) at maturity (range from 14.7 to 24.4 g N m−2) as a result of variation in seed N concentration and yield. There was no evidence that the larger amounts of mature seed N were associated with a larger vegetative N reservoir at growth stage R5 as determined by vegetative mass at R5 or the concentration of N in vegetative tissues. Increasing seed N at maturity did not lower the N concentration in abscised leaves and petioles, or in the stems at maturity. The rate and timing of leaf senescence (loss of chlorophyll) was essentially the same for all genotypes. With no increase in the contribution from redistributed N, increases in N uptake or fixation during seed filling must have been responsible for the higher levels of seed N at maturity in high-protein genotypes. These data suggest that increasing total seed N at maturity by selecting for higher seed protein concentration or higher yield in soybean does not require, as some models suggest, a larger vegetative N reservoir at the beginning of seed filling or more rapid senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号