首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Hu X  Jiang M  Zhang A  Lu J 《Planta》2005,223(1):57-68
The histochemical and cytochemical localization of abscisic acid (ABA)-induced H2O2 production in leaves of maize (Zea mays L.) plants were examined, using 3,3-diaminobenzidine (DAB) and CeCl3 staining, respectively, and the relationship between ABA-induced H2O2 production and ABA-induced subcellular activities of antioxidant enzymes was studied. H2O2 generated in response to ABA treatment was detected within 0.5 h in major veins of the leaves and maximized at about 2–4 h. In mesophyll and bundle sheath cells, ABA-induced H2O2 accumulation was observed only in apoplast, and the greatest accumulation occurred in the walls of mesophyll cells facing large intercellular spaces. Meanwhile, ABA treatment led to a significant increase in the activities of the leaf chloroplastic and cytosolic antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), the O 2 scavenger Tiron and the H2O2 scavenger dimethylthiourea (DMTU) almost completely arrested the increase in the activities of these antioxidant enzymes. Our results indicate that the accumulation of apoplastic H2O2 is involved in the induction of the chloroplastic and cytosolic antioxidant enzymes. Moreover, an oxidative stress induced by paraquat (PQ), which generates O 2 and then H2O2 in chloroplasts, also up-regulated the activities of the chloroplastic and cytosolic antioxidant enzymes, and the up-regulation was blocked by the pretreatment with Tiron and DMTU. These data suggest that H2O2 produced at a specific cellular site could coordinate the activities of antioxidant enzymes in different subcellular compartments.  相似文献   

2.
Jiang J  Wang P  An G  Wang P  Song CP 《Plant cell reports》2008,27(2):377-385
SB203580 is a specific inhibitor of p38 mitogen-activated protein (MAP) kinase and has been widely used to investigate the physiological roles of p38 in animal and yeast cells. Here by using an epidermal strip bioassay, laser-scanning confocal microscopy and whole-cell patch clamp analysis, we assess the effects of pyridinyl imidazoles-like SB203580 on the H2O2 signaling in guard cells of Vicia faba L. The results indicated that SB203580 blocks H2O2- or ABA-induced stomatal closure, ABA-induced H2O2 generation, and decrease in K+ fluxing across plasma membrane of Vicia guard cells by application of ABA and H2O2, whereas its analog SB202474 had no effect on these events. Thus, these results suggest that activation of p38-like MAP kinase modulates guard cell ROS signaling in response to stress.  相似文献   

3.
Complex I is the main O2 producer of the mitochondrial respiratory chain. O2 release is low with NAD-linked substrates and increases strongly during succinate oxidation, which increases the QH2/Q ratio and is rotenone sensitive. We show that the succinate dependent O2 production (measured as H2O2 release) is inhibited by propargylamine containing compounds (clorgyline, CGP 3466B, rasagiline and TVP-1012). The inhibition does not affect membrane potential and is unaffected by ΔpH modifications. Mitochondrial respiration is similarly unaffected. The propargylamines inhibition of O2 /H2O2 production is monitored also in the presence of the Parkinson's disease toxin dopaminochrome which stimulates O2 release. Propargylamine-containing compounds are the first pharmacological inhibitors described for O2 release at Complex I.  相似文献   

4.
5.
This work was designed in order to gain an insight on the mechanisms by which antioxidants prevent pancreatic disorders. We have examined the properties of cinnamtannin B-1, which belongs to the class of polyphenols, against the effect of hydrogen peroxide (H2O2) in mouse pancreatic acinar cells. We have studied Ca2+ mobilization, oxidative state, amylase secretion, and cell viability of cells treated with cinnamtannin B-1 in the presence of various concentrations of H2O2. We found that H2O2 (0.1–100 μM) increased CM-H2DCFDA-derived fluorescence, reflecting an increase in oxidation. Cinnamtannin B-1 (10 μM) reduced H2O2-induced oxidation of CM-H2DCFDA. CCK-8 induced oxidation of CM-H2DCFDA in a similar way to low micromolar concentrations of H2O2, and cinnamtannin B-1 reduced the oxidant effect of CCK-8. In addition, H2O2 induced a slow and progressive increase in intracellular free Ca2+ concentration ([Ca2+]c). Cinnamtannin B-1 reduced the effect of H2O2 on [Ca2+]c, but only at the lower concentrations of the oxidant. H2O2 inhibited amylase secretion in response to cholecystokinin, and cinnamtannin B-1 reduced the inhibitory action of H2O2 on enzyme secretion. Finally, H2O2 reduced cell viability, and the antioxidant protected acinar cells against H2O2. In conclusion, the beneficial effects of cinnamtannin B-1 appear to be mediated by reducing the intracellular Ca2+ overload and intracellular accumulation of digestive enzymes evoked by ROS, which is a common pathological precursor that mediates pancreatitis. Our results support the beneficial effect of natural antioxidants in the therapy against oxidative stress-derived deleterious effects on cellular physiology.  相似文献   

6.
Here we examined whether Ca2+/Calmodulin (CaM) is involved in abscisic acid (ABA)-induced antioxidant defense and the possible relationship between CaM and H2O2 in ABA signaling in leaves of maize (Zea mays L.) plants exposed to water stress. An ABA-deficient mutant vp5 and its wild type were used for the experimentation. We found that water stress enhanced significantly the contents of CaM and H2O2, and the activities of chloroplastic and cytosolic superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and the gene expressions of the CaM1, cAPX, GR1 and SOD4 in leaves of wild-type maize. However, the increases mentioned above were almost arrested in vp5 plants and in the wild-type plants pretreated with ABA biosynthesis inhibitor tungstate (T), suggesting that ABA is required for water stress-induced H2O2 production, the enhancement of CaM content and antioxidant defense. Besides, we showed that the up-regulation of water stress-induced antioxidant defense was almost completely blocked by pretreatment with Ca2+ inhibitors, CaM antagonists and reactive oxygen (ROS) manipulators. Moreover, the analysis of time course of CaM and H2O2 production under water stress showed that the increase in CaM content preceded that of H2O2. These results suggested that Ca2+/CaM and H2O2 were involved in the ABA-induced antioxidant defense under water stress, and the increases of Ca2+/CaM contents triggered H2O2 production, which inversely affected the contents of CaM. Thus, a cross-talk between Ca2+/CaM and H2O2 may play a pivotal role in the ABA signaling.  相似文献   

7.
Insulin resistance results, in part, from impaired insulin signaling in insulin target tissues. Consequently, increased levels of insulin are necessary to control plasma glucose levels. The effects of elevated insulin levels on pancreatic beta (β) cell function, however, are unclear. In this study, we investigated the possibility that insulin may influence survival of pancreatic β cells. Studies were conducted on RINm, RINm5F and Min-6 pancreatic β-cells. Cell death was induced by treatment with H2O2, and was estimated by measurements of LDH levels, viability assay (Cell-Titer Blue), propidium iodide staining and FACS analysis, and mitochondrial membrane potential (JC-1). In addition, levels of cleaved caspase-3 and caspase activity were determined. Treatment with H2O2 increased cell death; this effect was increased by simultaneous treatment of cells with insulin. Insulin treatment alone caused a slight increase in cell death. Inhibition of caspase-3 reduced the effect of insulin to increase H2O2-induced cell death. Insulin increased ROS production by pancreatic β cells and increased the effect of H2O2. These effects were increased by inhibition of IR signaling, indicative of an effect independent of the IR cascade. We conclude that elevated levels of insulin may act to exacerbate cell death induced by H2O2 and, perhaps, other inducers of apoptosis.  相似文献   

8.
Human NK cells can be divided into two subsets, CD56dimCD16(+)NK and CD56brightCD16(−)NK cells, based on their expression of CD56 and CD16. In the present study, we analyzed the relationship between CD56dim/CD56bright NK cells and H2O2 in tumor-infiltrating NK cells in patients with gastric (n = 50) and esophageal (n = 35) cancer. The ratio of CD56dim NK cells infiltrating tumors gradually decreased according to disease progression. H2O2 was abundantly produced within tumor microenvironments, and there was an inverse correlation between CD56dim NK cell infiltration and H2O2 production. CD56dim NK cells are more sensitive to apoptosis induced by physiological levels of H2O2 than CD56bright NK cells. Furthermore, the exposure of NK cells to H2O2 resulted in the impairment of ADCC activity. In conclusion, H2O2 produced within tumor microenvironments inversely correlated with the infiltration of CD56dim NK cells, possibly due to their preferentially induced cell death. These observations may explain one of the mechanisms behind NK cell dysfunction frequently observed in tumor microenvironments.  相似文献   

9.
Addition of chitosan or H2O2 caused destruction of nuclei of epidermal cells (EC) in the epidermis isolated from pea leaves. Phenol, a substrate of the apoplastic peroxidase-oxidase, in concentrations of 10−10–10−6 M prevented the destructive effect of chitosan. Phenolic compounds 2,4-dichlorophenol, catechol, and salicylic acid, phenolic uncouplers of oxidative phosphorylation pentachlorophenol and 2,4-dinitrophenol, and a non-phenolic uncoupler carbonyl cyanide m-chlorophenylhydrazone, but not tyrosine or guaiacol, displayed similar protective effects. A further increase in concentrations of the phenolic compounds abolished their protective effects against chitosan. Malate, a substrate of the apoplastic malate dehydrogenase, replenished the pool of apoplastic NADH that is a substrate of peroxidase-oxidase, prevented the chitosan-induced destruction of the EC nuclei, and removed the deleterious effect of the increased concentration of phenol (0.1 mM). Methylene Blue, benzoquinone, and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) capable of supporting the optimal catalytic action of peroxidase-oxidase cancelled the destructive effect of chitosan on the EC nuclei. The NADH-oxidizing combination of TMPD with ferricyanide promoted the chitosan-induced destruction of the nuclei. The data suggest that the apoplastic peroxidase-oxidase is involved in the antioxidant protection of EC against chitosan and H2O2.  相似文献   

10.
Barley seedlings were pre-treated with 1 and 5 μM H2O2 for 2 d and then supplied with water or 150 mM NaCl for 4 and 7 d. Exogenous H2O2 alone had no effect on the proline, malondialdehyde (MDA) and H2O2 contents, decreased catalase (CAT) activity and had no effect on peroxidase (POX) activity. Three new superoxide dismutase (SOD) isoenzymes appeared in the leaves as a result of 1 μM H2O2 treatment. NaCl enhanced CAT and POX activity. SOD activity and isoenzyme patterns were changed due to H2O2 pre-treatment, NaCl stress and leaf ageing. In pre-treated seedlings the rate of 14CO2 fixation was higher and MDA, H2O2 and proline contents were lower in comparison to the seedlings subjected directly to NaCl stress. Cl content in the leaves 4 and 7 d after NaCl supply increased considerably, but less in pre-treated plants. It was suggested that H2O2 metabolism is involved as a signal in the processes of barley salt tolerance.  相似文献   

11.
Guo Z  Chen Z  Zhang W  Yu X  Jin M 《Biotechnology letters》2008,30(5):877-883
To develop an integrated process of CO2-fixation and H2 photoproduction by marine green microalga Platymonas subcordiformis, the impact of algal cells grown in CO2-supplemented air bubble column bioreactor was investigated on H2 photoproduction regulated by carbonylcyanide m-chlorophenylhrazone. Highest cell growth (3.85 × 106 cells ml−1), starch content (0.25 ± 0.08 mg per 106 cells) and hydrogen production (50 ± 3 ml l−1) were achieved at 3% CO2-supplemented culture, which are respectively 1.4, 2.1, 1.5-fold of the air-supplemented culture. Improved H2 production correlated well with the increase in starch accumulation. In this process, the algal cells have been recycled for stable H2 production of 40–50 ml l−1 over five cycles.  相似文献   

12.
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91phox (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca2+ channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca2+-dependent NADPH oxidase.  相似文献   

13.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+]o) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas. (Mol Cell Biochem 269: 165–173, 2005)  相似文献   

14.
Symbiotic dinoflagellates of the species Amphidinium are expected to be pharmaceutically useful microalgae because they produce antitumor macrolides. A microalgae production system with a large number of cells at a high density has been developed for the efficient production of macrolide compounds. In the present study, the effects of culture conditions on the cellular growth rate of dinoflagellates were investigated to determine the optimum culture conditions for obtaining high yields of microalgae. Amphidinium species was cultured under conditions with six temperature levels (21–35°C), six levels of photosynthetic photon flux density (15–70 μmol photons m−2 s−1), three levels of CO2 concentration (0.02–0.1%), and three levels of O2 concentration (0.2–21%). The number of cells cultured in a certain volume of solution was monitored microscopically and the cellular growth rate was expressed as the specific growth rate. The maximum specific growth rate was 0.022 h−1 at a temperature of 26°C and O2 concentration of 5%, and the specific growth rate was saturated at a CO2 concentration of 0.05%, a photosynthetic photon flux density of 35 μmol photons m−2 s−1 and a photoperiod of 12 h day−1 upon increasing each environmental parameter. The results demonstrate that Amphidinium species can multiply efficiently under conditions of relatively low light intensity and low O2 concentration.  相似文献   

15.
Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO2, H2, and N2 were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO2 uptake was estimated from the addition of CO2 as acidic titrant and O2 evolution was estimated from titration by H2, which was used to reduce O2 over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O2 evolution and CO2 up-take rates. NH4 +, NO2 , or NO3 was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH4 + as the nitrogen source and 1.3 when NO3 was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3–4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO2 and H2 into the reactor headspace to estimate the up-take of CO2, the production of O2, and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified.  相似文献   

16.
Effects of exogenous H2O2 application on vinblastine (VBL) and its precursors, vindoline (VIN), catharanthine (CAT) and α-3′,4′-anhydrovinblastine (AVBL), were measured in Catharanthus roseus seedlings in order to explore possible correlation of VBL formation with oxidative stress. VBL accumulation has previously been shown to be regulated by an in vitro H2O2-dependent peroxidase (POD)-like synthase. Experimental exposure of plants to different concentrations of H2O2 showed that endogenous H2O2 and alkaloid concentrations in leaves were positively elevated. The time-course variations of alkaloid concentrations and redox state, reflected by the concentrations of H2O2, ascorbic acid (AA), oxidative product of glutathione (GSSG) and POD activity, were significantly altered due to H2O2 application. The further correlation analysis between alkaloids and redox status indicated that VBL production was tightly correlated with redox status. These results provide a new link between VBL metabolisms and redox state in C. roseus.  相似文献   

17.
The root system of potato (Solanum tuberosum L. cv. Favorita) plants was treated with different O2 and CO2 concentrations for 35 d in aeroponic culture. Under 21 or 5 % O2 in the root zones, the thickness of leaves and palisade parenchyma significantly increased at 3 600 μmol(CO2) mol−1 in the root zone, compared with CO2 concentration 380 μmol mol−1 or low CO2 concentration (100 μmol mol−1). In addition, smaller cells of palisade tissue, more intercellular air spaces and partially two layers of palisade cells were observed in the leaves with root-zone CO2 enrichment. Furthermore, there was a significant increase in the size of chloroplasts and starch grains, and the number of starch grains per chloroplast due to elevated CO2 only under 21 % O2. In addition, a significant decline in the thickness of grana and the number of lamellas, but no significant differences in the number of grana per chloroplast were observed under elevated CO2 concentration. The accumulation of starch grains in the chloroplast under elevated CO2 concentration could change the arrangement of grana thylakoids and consequently inhibited the absorption of sun radiation and photosynthesis of potato plants.  相似文献   

18.
The influence of reduced sulfur compounds (including stored S0) on H2 evolution/consumption reactions in the purple sulfur bacterium, Thiocapsa roseopersicina BBS, was studied using mutants containing only one of the three known [NiFe] hydrogenase enzymes: Hox, Hup or Hyn. The observed effects depended on the kind of hydrogenase involved. The mutant harbouring Hox hydrogenase was able to use S2O32−, SO32−, S2− and S0 as electron donors for light-dependent H2 production. Dark H2 evolution from organic substrates via Hox hydrogenase was inhibited by S0. Under light conditions, endogenous H2 uptake by Hox or Hup hydrogenases was suppressed by S compounds. СО2-dependent H2 uptake by Hox hydrogenase in the light required the additional presence of S compounds, unlike the Hup-mediated process. Dark H2 consumption via Hyn hydrogenase was connected to utilization of S0 as an electron acceptor and resulted in the accumulation of H2S. In wild type BBS, with high levels of stored S0, dark H2 production from organic substrates was significantly lower, but H2S accumulation significantly higher, than in the mutant GB1121(Hox+). There is a possibility that H2 produced via Hox hydrogenase is consumed by Hyn hydrogenase to reduce S0.  相似文献   

19.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (P N) and stomatal conductance (g s) of attached leaves decreased as leaf water potential (Ψw) declined from −0.3 to −2.9 MPa. Although g s decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (C i) were observed as Ψw decreased to −1.8 MPa, but C i increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 μmol m−2 s−1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from −0.3 to −2.9 MPa. A significant linear relationship between mean P N and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower.  相似文献   

20.
Using open top chambers, the effects of elevated O3 (80 nmol mol−1) and elevated CO2 (700 μmol mol−1), alone and in combination, were studied on young trees of Quercus mongolica. The results showed that elevated O3 increased malondialdehyde content and decreased photosynthetic rate after 45 days of exposure, and prolonged exposure (105 days) induced significant increase in electrolyte leakage and reduction of chlorophyll content. All these changes were alleviated by elevated CO2, indicating that oxidative stress on cell membrane and photosynthesis was ameliorated. After 45 days of exposure, elevated O3 stimulated activities of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11), but the stimulation was dampened under elevated CO2 exposure. Furthermore, ascorbate (AsA) and total phenolics contents were not higher in the combined gas treatment than those in elevated O3 treatment. It indicates that the protective effect of elevated CO2 against O3 stress was achieved hardly by enhancing ROS scavenging ability after 45 days of exposure. After 105 days of exposure, elevated O3 significantly decreased activities of SOD, catalase (CAT, EC 1.11.1.6) and APX and AsA content. Elevated CO2 suppressed the O3-induced decrease, which could ameliorate the oxidative stress in some extent. In addition, elevated CO2 increased total phenolics content in the leaves both under ambient O3 and elevated O3 exposure, which might contribute to the protection against O3-induced oxidative stress as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号