首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermoregulatory behavior of Hemigrapsus nudus, the amphibious purple shore crab, was examined in both aquatic and aerial environments. Crabs warmed and cooled more rapidly in water than in air. Acclimation in water of 16 degrees C (summer temperatures) raised the critical thermal maximum temperature (CTMax); acclimation in water of 10 degrees C (winter temperatures) lowered the critical thermal minimum temperature (CTMin). The changes occurred in both water and air. However, these survival regimes did not reflect the thermal preferences of the animals. In water, the thermal preference of crabs acclimated to 16 degrees C was 14.6 degrees C, and they avoided water warmer than 25.5 degrees C. These values were significantly lower than those of the crabs acclimated to 10 degrees C; these animals demonstrated temperature preferences for water that was 17 degrees C, and they avoided water that was warmer than 26.9 degrees C. This temperature preference was also exhibited in air, where 10 degrees C acclimated crabs exited from under rocks at a temperature that was 3.2 degrees C higher than that at which the 16 degrees C acclimated animals responded. This behavioral pattern was possibly due to a decreased thermal tolerance of 16 degrees C acclimated crabs, related with the molting process. H. nudus was better able to survive prolonged exposure to cold temperatures than to warm temperatures, and there was a trend towards lower exit temperatures with the lower acclimation (10 degrees C) temperature. Using a complex series of behaviors, the crabs were able to precisely control body temperature independent of the medium, by shuttling between air and water. The time spent in either air or water was influenced more strongly by the temperature than by the medium. In the field, this species may experience ranges in temperatures of up to 20 degrees C; however, it is able to utilize thermal microhabitats underneath rocks to maintain its body temperature within fairly narrow limits.  相似文献   

2.
Experiments were carried out on four healthy male subjects in two separate sessions: (a) A baseline period of two consecutive nights, one spent at thermoneutrality [operative temperature (To) = 30 degrees C, dew-point temperature (Tdp) = 7 degrees C, air velocity (Va) = 0.2 m.s-1] and the other in hot condition (To = 35 degrees C, Tdp = 7 degrees C, Va = 0.2 m.s-1). During the day, the subjects lived in their normal housing and were engaged in their usual activities. (b) An acclimation period of seven consecutive daily heat exposures from 1400 to 1700 hours (To = 44 degrees C, Tdp = 29 degrees C, Va = 0.3 m.s-1). During each night, the subjects slept in thermoneutral or in hot conditions. The sleep measurements were: EEG from two sites, EOG from both eyes, EMG and EKG. Esophageal and ten skin temperatures were recorded continuously during the night. In the nocturnal hot conditions, a sweat collection capsule recorded the sweat gland activity in the different sleep stages. Results showed that passive body heating had no significant effect on the sleep structure of subsequent nights at thermoneutrality. In contrast, during nights at To = 35 degrees C an effect of daily heat exposure was observed on sleep. During the 2nd night of the heat acclimation period, sleep was more restless and less efficient than during the baseline night. The rapid eye movement sleep duration was reduced, while the rate of transient activation phases observed in sleep stage 2 increased significantly. On the 7th night, stage 4 sleep increased (+68%) over values observed during the baseline night.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The behavioral thermoregulation of the red swamp crayfish, Procambarus clarki, was investigated in its burrow environment. In the field, air and water temperatures within crayfish burrows fluctuated less compared with surface temperatures in the Mojave Desert. However, crayfish could still experience sub-optimal temperature regimes inside burrows. In the laboratory, P. clarki heated and cooled more rapidly in water than in air. In a thermal gradient, the crayfish selected a water temperature of 22 degrees C and avoided water temperatures above 31 degrees C and below 12 degrees C. Observations of behavior in an artificial burrow showed that P. clarki displayed three main shuttling behaviors between water and air in response to temperature. The number of bilateral emersions and emigrations, as well as the amount of time spent in air (in a 24 h period), were significantly greater at 34 degrees C than at 12, 16, 22 or 28 degrees C. This reflected an increased use of the behavioral thermoregulation at temperatures approaching the critical thermal maximum of this species. Upon migrating from 34 degrees C water into 38 degrees C air, crayfish body temperature decreased significantly. These periods of emersion were interspersed with frequent dipping in the water, allowing the crayfish to gain the benefits of evaporative cooling, without the physiological costs incurred by long-term exposure to air.  相似文献   

4.
The significance of sleep and factors that affect it have been well documented, however, in light of global climate change the effect of temperature on sleep patterns has only recently gained attention. Unlike many mammals, bats (order: Chiroptera) are nocturnal and little is known about their sleep and the effects of ambient temperature (Ta) on their sleep. Consequently we investigated seasonal temperature effects on sleep behaviour and surface body temperature of free-ranging Wahlberg’s epauletted fruit bat, Epomophorus wahlbergi, at a tree roost. Sleep behaviours of E. wahlbergi were recorded, including: sleep duration and sleep incidences (i.e. one eye open and both eyes closed). Sleep differed significantly across all the individuals in terms of sleep duration and sleep incidences. Individuals generally spent more time awake than sleeping. The percentage of each day bats spent asleep was significantly higher during winter (27.6%), compared with summer (15.6%). In summer, 20.7% of the sleeping bats used one eye open sleep, and this is possibly the first evidence of one-eye-sleep in non-marine mammals. Sleep duration decreased with extreme heat as bats spent significantly more time trying to cool by licking their fur, spreading their wings and panting. Skin temperatures of E. wahlbergi were significantly higher when Ta was ≥35°C and no bats slept at these high temperatures. Consequently extremely hot days negatively impact roosting fruit bats, as they were forced to be awake to cool themselves. This has implications for these bats given predicted climate change scenarios.  相似文献   

5.
将球孢白僵菌(Beauveriabassiana)BBSG8702的未干燥孢子粉(含水量58.9±1.6%)和真空冷冻干燥孢子粉(含水量7.4±0.9%)置于4℃和20℃下贮存1个月,每隔5d取样测定活孢率和孢子内贮总糖和蛋白含量,发现含水量和贮存温度交互影响孢子的活力以及内贮总糖和蛋白质的代谢水平,各组合中的活孢率一般与内贮总糖和蛋白质代谢水平均存在显著或极显著相关性.在1个月的贮存期间,4℃下冻干粉总糖含量下降13.4%,蛋白质含量下降39.2%,清水中的萌发率下降32.0%,营养液中的萌发率仅下降6.7%,而未干燥孢子粉的相同指标分别下降42.4%、66.3%、96.4%和99%;在20℃下,冻干粉的上述指标分别下降了14.1%、38.2%、55.8%和 10.4%,而未干燥孢子粉则分别下降了 43.2%、65.4%、99.4%和98.4%. 显然,含水量影响活孢率和内贮营养衰变的幅度,而温度影响衰变的速度,但内贮营养的耗尽并不立即引起孢子失活,在供给外源营养之后孢子仍能萌发.将含水量降至4.0±0.9%的冻干粉贮存1年,4℃下活孢率由初始的99.0%下降至90.2%,而20℃下贮存的前165d活孢率下降较为缓慢,但此后急剧下降,至第240d时几乎全部失活.模拟分析表明,低含水量冻干粉在4℃和20℃下贮存的半衰期(即活孢率减少一半所需的时间)分别为1006d和197d.这些结果说明,白僵菌纯孢粉的含水量  相似文献   

6.
One of the proposed ecological functions of sleep is to conserve energy. The majority of studies that support this theory have been done on endothermic animals whose body temperatures drop during sleep due to the reduced neurological control of thermoregulation. In the present study, we examined typical temperatures to which the Desert Iguana, Dipsosaurus dorsalis, is exposed to in the field and found that mean high temperatures ranged from 24-58 degrees C throughout the active portion of the year. We also examined the ecological savings that sleep could provide for this ectothermic iguana using a closed system respirometer. We found that laboratory-acclimated iguanas are able to save significantly more (27.6%) energy by sleeping than by being awake and that field iguanas also had significant savings of energy (69.1%) while asleep. However, iguanas could save more energy by remaining awake at cooler temperatures than by sleeping at warmer temperatures. In addition, we found no correlation for time of night with metabolic rate. Our study supports the hypothesis that one potential function of sleep is to conserve energy.  相似文献   

7.
Contractile properties of the fast-twitch glycolytic (FG) portion of the iliofibularis muscle and sprint running performance were studied at approximately 5 degrees C intervals from 15-44 degrees C in the lizard Dipsosaurus dorsalis. Maximal running velocity (VR) and stride frequency (f) were both greatest when body temperature (Tb) was 40 degrees C, the field-active Tb in Dipsosaurus. At 40 degrees C VR was 4.3 +/- 0.2 m/s and f was 13.5 +/- 0.5 s-1. Between 25 and 40 degrees C, the thermal dependencies of VR and f were approximately constant (Q10's of 1.31 and 1.36 got VR and f, respectively). Below 25 degrees C performance declined more markedly with decreasing temperature. At 20 degrees C strides were qualitatively normal, but VR was only half of the value at 25 degrees C. At 15 degrees C the lizards were substantially incapacitated, and VR was 10% of the value at 20 degrees C. Stride length was approximately 0.33 m and changed very little with Tb from 20-44 degrees C. The time dependent contractile properties of FG muscle were affected more by temperature than was sprint performance. The maximal velocity of shortening at zero load (VO) was 18.7 0/s at 40 degrees C and had a Q10 of 1.7 from 25-40 degrees C. Maximal power output (Wmax) determined from the force-velocity curve was 464 W/kg at 40 degrees C. Below 40 degrees C max varied with temperature with a Q10 of 2-3. The shape of the force-velocity curve changed little with temperature (Wmax/POVO = 0.11). Between 25 and 40 degrees C a relatively temperature-independent process must modulate the effects of temperature on the contractile properties of the muscles that supply the power for burst locomotion. Storage and recovery of elastic energy appears to be a likely candidate for such a process. Below 25 degrees C, however, the contraction time is prolonged to such an extent that the f attainable is limited by the minimum time taken to contract and relax the muscles.  相似文献   

8.
不同温度对中国对虾生长及能量收支的影响   总被引:11,自引:3,他引:11  
研究了18~34℃6个不同恒温下中国对虾(Fenneropenaeus chinensis)的生长、饵料转化率及能量收支。结果表明,中国对虾的体重及能量特定生长率分别变动在1.22%~3.27%和1.33%~1.45%之间,在18~31℃温度范围内随温度升高而升高,34℃下则显著下降.对虾的摄食量及对饵料的消化率总体上随温度升高而升高,但在34℃下则有所降低;饵料重量转化率和能量转化率分别在28.99%~53.09%和15.70%~7.24%之间,总体上随温度升高而有所下降.根据拟合的多项式方程推算得到的中国对虾的最佳生长温度为29.7℃,生长能和呼吸能的变化主导着中国对虾的能量收支模式,随温度升高生长能占摄食能的比例逐渐降低,而呼吸能比例则逐渐升高。本研究表明,对虾在适宜温度下获得的较高生长率主要归因于较高的摄食量和食物消化率。  相似文献   

9.
Many ectotherms regularly experience considerable short-term variations in environmental temperature, which affects their body temperature. Here we investigate the cardiovascular responses to a stepwise acute temperature increase from 10 to 13 and 16 degrees C in rainbow trout (Oncorhynchus mykiss). Cardiac output increased by 20 and 31% at 13 and 16 degrees C, respectively. This increase was entirely mediated by an increased heart rate (fH), whereas stroke volume (SV) decreased significantly by 20% at 16 degrees C. The mean circulatory filling pressure (MCFP), a measure of venous capacitance, increased with temperature. Central venous pressure (Pven) did not change, whereas the pressure gradient for venous return (MCFP-Pven) was significantly increased at both 13 and 16 degrees C. Blood volume, as measured by the dilution of 51Cr-labeled red blood cells, was temperature insensitive in both intact and splenectomized trout. This study demonstrates that venous capacitance in trout decreases, but cardiac filling pressure as estimated by Pven does not change when cardiac output increases during an acute temperature increase. SV was compromised as fH increased with temperature. The decreased capacitance likely serves to prevent passive pooling of blood in the venous periphery and to maintain cardiac filling pressure and a favorable pressure gradient for venous return.  相似文献   

10.
11.
Thermoregulation, metabolism, and stages of sleep in cold-exposed men   总被引:2,自引:0,他引:2  
Four naked men, selected for their ability to sleep in the cold, were exposed to an ambient temperature (Ta) of 21 degrees C for five consecutive nights. Electrophysiological stages of sleep, O2 consumption (VO2), and skin (Tsk), rectal (Tre), and tympanic (Tty) temperatures were recorded. Compared with five nights at a thermoneutral Ta of 29 degrees C, cold induced increased wakefulness and decreased stage 2 sleep, without significantly affecting other stages. Tre and Tty declined during each condition. The decrease in Tre was greater at 21 degrees C than at 29 degrees C, whereas Tty did not differ significantly between conditions. Increases in Tty following REM sleep onset at 21 degrees C were negatively correlated with absolute Tty. VO2 and forehead Tsk also increased during REM sleep at both TaS, whereas Tsk of the limb extremities declined at 21 degrees C. Unsuppressed REM sleep in association with peripheral vasoconstriction and increased Tty and VO2 in cold-exposed humans, do not signify an inhibition of thermoregulation during this sleep stage as has been observed in other mammals.  相似文献   

12.
The central neural pathways underlying the physiological coordination between thermoregulation and the controls of the wake-sleep behavior and cardiovascular function remain insufficiently understood. Growing evidence supports the involvement of hypocretin (orexin) peptides in behavioral, cardiovascular, and thermoregulatory functions. We investigated whether the effects of ambient temperature on wake-sleep behavior and cardiovascular control depend on the hypothalamic neurons that release hypocretin peptides. Orexin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure transducer. Simultaneous sleep and blood pressure recordings were performed on freely-behaving mice at ambient temperatures ranging between mild cold (20°C) and the thermoneutral zone (30°C). In both mouse groups, the time spent awake and blood pressure were higher at 20°C than at 30°C. The cold-related increase in blood pressure was significantly smaller in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness. Blood pressure was higher in wakefulness than either in NREMS or REMS at both ambient temperatures. This effect was significantly blunted in orexin-ataxin3 mice irrespective of ambient temperature and particularly during REMS. These data demonstrate that hypocretin neurons are not a necessary part of the central pathways that coordinate thermoregulation with wake-sleep behavior and cardiovascular control. Data also support the hypothesis that hypocretin neurons modulate changes in blood pressure between wakefulness and the sleep states. These concepts may have clinical implications in patients with narcolepsy with cataplexy, who lack hypocretin neurons.  相似文献   

13.
Sweat gland response to local heating during sleep in man   总被引:1,自引:0,他引:1  
In order to assess whether the fluctuations in the sweating response occurring during sleep are related to changes in central drive or in peripheral sweat gland reactivity, 4 healthy male subjects spent 6 non-consecutive nights in a climatic chamber. Air temperature was 25 degrees C, dew-point temperature was 10 degrees C and air velocity was 0.3 m X s-1, while wall temperature was either 38 degrees C, 46 degrees C or 48.7 degrees C giving 3 levels of operative temperature (To = 30, 33 or 34 degrees C). During the whole night, 2 local sweating rates on the right and the left sides of the upper chest were continuously recorded from 12 cm2 area capsules using a dew-point hygrometer technique, while applying local thermal clamps, a constant 2 degrees C difference in local skin temperatures being imposed between the two symmetrical skin areas. Continuous measurements were made of rectal temperature, 10 local skin temperatures, 2 EEGs, 2 EOGs, 1 EMG and 1 ECG. Results show that the multiplicative relationship between the peripheral influence of local skin temperature and the central drive for sweating described in waking subjects, is still valid in sleeping subjects. No peripheral change appears in sweat gland reactivity between the different sleep stages. Changes in the sensitivity of the thermoregulatory system occurring during sleep cannot be explained by a local factor acting at the sweat gland level.  相似文献   

14.
Ethanol-induced changes in neuronal membrane order. An NMR study   总被引:2,自引:0,他引:2  
The effects of ethanol-d6 on the lipid matrix of rat brain neuronal membranes were investigated by delayed Fourier transform 1H-NMR techniques. At 24 degrees C, neither 0.1 nor 0.2% (v/v) ethanol-d6 measurably affected the methylene resonance intensity. However, 0.4 and 1.0% ethanol-d6 increased resonance intensity, 35 and 51%, respectively. With increasing temperature, a decrease in resonance intensity for 0.1% ethanol-d6 was observed reaching a maximum of 20% at 42 degrees C. Furthermore, increasing temperature attenuated the increases in resonance intensity seen with 0.4 and 1.0% ethanol-d6. At 24 degrees C, no concentration of ethanol-d6 had a significant effect on the choline methyl resonance. However, with increasing temperature both 0.1 and 0.2% ethanol-d6 decreased this resonance's intensity. The intensity of the terminal methyl resonance was increased in a dose related fashion by ethanol-d6, reaching a maximum of +41% at 1.0% (24 degrees C). Increasing temperature attenuated this effect, but no concentration of ethanol-d6 significantly decreased resonance intensity. The increases and decreases in resonance intensity induced by ethanol-d6 are interpreted in terms of a decrease and an increase in membrane order, respectively. It is proposed that ethanol-d6 exerts two effects on neuronal membranes, an ordering effect on the membrane surface and a disordering effect in the membrane interior. A higher enthalpy of ethanol binding to the surface as compared to the interior of the membrane leads to an attenuation of the ethanol disordering effect with increasing temperature.  相似文献   

15.
紫花苜蓿种子对逆境贮藏条件的反应   总被引:7,自引:0,他引:7  
以陇东紫花苜蓿 (MedicagosativaL .cv .“Longdong”)种子为材料 ,在室温、35℃和 35℃ +10 %的种子含水量 (SMC) 3种贮藏、接种或不接种燕麦镰刀菌 (Fusariumavenaceum (Fr.)Sacc .)的条件下 ,1年贮藏期内对各逆境处理的种子每隔 6 0d进行 1次标准发芽试验 ,2 0℃恒温、第 10d统计种子的发芽率和死亡率 ,试验结束时计测种子幼苗的长度和感病率 ;在大田条件下观测各处理种子的出苗率 ,确定催腐 (CD)与各种贮藏条件下的苜蓿种带真菌种类和检出率 .结果表明 ,随着贮藏温度和种子含水量等逆境贮藏条件胁迫的加剧 ,苜蓿种带真菌检出率逐渐增高 ,从室温、35℃条件下的 10 %上升到CD +35℃ +10 %SMC条件下的 2 9% ;抗病性逐渐减弱 ,35℃ +10 %SMC条件下幼苗的感病率和种子死亡率显著 (P <0 .0 5 )高于室温和 35℃下的感病率和种子死亡率 ;室内种子发芽率和田间出苗率逐渐下降 ,35℃ +10 %SMC条件下的种子的发芽率和田间出苗率显著 (P <0 .0 5 )低于在室温和 35℃下的发芽率和田间出苗率 ;幼苗生长受到抑制 ,35℃ +10 %SMC条件下的苗长和根长显著 (P <0 .0 5 )低于在室温和 35℃下的幼苗长度 .随着贮藏时间的延长 ,种子真菌检出率和田间出苗率下降 ,幼苗感病率增加 .与未接种的对照相比 ,接种燕麦镰刀菌的种子  相似文献   

16.
An isometric muscle preparation was used to investigate the importance of the ventricular sarcoplasmic reticulum (SR) and extracellular Ca2+ (1.25 up to 11.25 mM) to force generation at 25 degrees C (acclimation temperature), 15 and 35 degrees C. The post-rest tension and force-frequency relationship were conducted with and without 10 microM ryanodine in the bathing medium. Increments in extracellular Ca2+ resulted in increases in twitch force development only at 35 degrees C. A significant post-rest potentiation was recorded for the control preparations at 25 degrees C (100% to 119.8+/-4.1%). However, this post-rest potentiation was inhibited by ryanodine only at 25 degrees C (100% to 97.6+/-1.5%). At 35 degrees C, force remained unchanged in the control preparations, but a significant post-rest decay was recorded in the presence of ryanodine (100% to 76.6+/-4.6%) while at 15 degrees C, ryanodine was not able to preventing the post-rest potentiation observed in the control preparations. The increases in the imposed contraction frequency caused a decline of the force at 25 and 35 degrees C and ryanodine decreased significantly peak tension at both temperatures. The findings suggest a high or medium calcium turnover, possibly related to the presence of a functional SR, whose functionality is diminished when temperature is decreased.  相似文献   

17.
It is known that heating the ram scrotum stimulates heat loss resulting in a decrease in body temperature and that during fever core temperature increases, but local scrotal thermoeffectors operate to maintain normal scrotal temperature. We have investigated whether scrotal warming influences core body temperature and the panting effector during fever generation. We measured rectal temperature, intrascrotal temperature, scrotal skin temperature and respiratory frequency in four adult Merino rams following intravascular injection of saline or lipopolysaccharide at an ambient temperature of 18-20 degrees C while scrotal skin temperature was maintained at 33 degrees C or elevated to 41 degrees C. Compared to maintaining normal scrotal temperature, heating the scrotum increased respiratory frequency and reduced rectal temperature by a similar amount following LPS as following saline. Fever was associated with decreased respiratory frequency compared to saline at both 33 and 41 degrees C scrotal temperature, suggesting that the fever was generated mainly by decreasing respiratory heat loss. We conclude that scrotal thermal afferent stimulation resulted in an offset for the set-point of body temperature regulation in both normothermic and febrile rams.  相似文献   

18.
Core body temperature (Tb) is influenced by many physiological factors, including behavioral state, locomotor activity, and biological rhythms. To determine the relative roles of these factors, we examined Tb in orexin knockout (KO) mice, which have a narcolepsy-like phenotype with severe sleep-wake fragmentation. Because orexin is released during wakefulness and is thought to promote heat production, we hypothesized that orexin KO mice would have lower Tb while awake. Surprisingly, Tb was the same in orexin KO mice and wild-type (WT) littermates during sustained wakefulness. Orexin KO mice had normal diurnal variations in Tb, but the ultradian rhythms of Tb, locomotor activity, and wakefulness were markedly reduced. During the first 15 min of spontaneous sleep, the Tb of WT mice decreased by 1.0 degrees C, but Tb in orexin KO mice decreased only 0.4 degrees C. Even during intense recovery sleep after 8 h of sleep deprivation, the Tb of orexin KO mice remained 0.7 degrees C higher than in WT mice. This blunted fall in Tb during sleep may be due to inadequate activation of heat loss mechanisms or sustained activity in heat-generating systems. These observations reveal an unexpected role for orexin in thermoregulation. In addition, because heat loss is an essential aspect of sleep, the blunted fall in Tb of orexin KO mice may provide an explanation for the fragmented sleep of narcolepsy.  相似文献   

19.
White-browed sparrow-weavers (Plocepasser mahali, body mass 40 g) are group-living passerines adapted to the semi-arid environment of north-eastern and south-western Africa. During winter, the nocturnal ambient temperature of these regions often falls below 0 degrees C. imposing conditions demanding an increase in thermoregulatory heat production. Individuals roost throughout the year in inverted U-shaped roost nests. We investigated the energetic advantages of roosting by measuring nest and ambient temperatures in the field, as well as the resting metabolic rate (RMR) of the birds. The sparrow-weavers exhibited a wide thermoneutral zone (13 degrees C - 32 degrees C). Although RMR at thermoneutrality (40.2 J g.h(-1)) conforms with those of other passerines. the value at 0 degrees C (74.8 J g.h(-1)) is significantly lower than expected. The slope of the line below the lower critical temperature is unexpectedly steep, however, and appears to cause the physiological requirement for nest roosting due to a high cost of thermoregulation at low temperatures, perhaps due to shivering or non-shivering thermogenesis. The nest temperature at 0 degrees C ambient is 5 degrees C. resulting in a saving of some 7% in the energy spent during winter nights when food resources are in short supply compared with the rest of the year.  相似文献   

20.
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号