首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several putative schizophrenia susceptibility genes have recently been reported, but it is not clear whether these genes are associated with schizophrenia in general or with specific disease subtypes. In a previous study, we found an association of the neuregulin 1 (NRG1) gene with non-deficit schizophrenia only. We now report an association study of four schizophrenia candidate genes in patients with and without deficit schizophrenia, which is characterized by severe and enduring negative symptoms. Single-nucleotide polymorphisms (SNPs) were genotyped in the DTNBP1 (dysbindin), G72/G30 and RGS4 genes, and the relatively unknown PIP5K2A gene, which is located in a region of linkage with both schizophrenia and bipolar disorder. The sample consisted of 273 Dutch schizophrenia patients, 146 of whom were diagnosed with deficit schizophrenia and 580 controls. The strongest evidence for association was found for the A-allele of SNP rs10828317 in the PIP5K2A gene, which was associated with both clinical subtypes (P = 0.0004 in the entire group; non-deficit P = 0.016, deficit P = 0.002). Interestingly, this SNP leads to a change in protein composition. In RGS4, the G-allele of the previously reported SNP RGS4-1 (single and as part of haplotypes with SNP RGS4-18) was associated with non-deficit schizophrenia (P = 0.03) but not with deficit schizophrenia (P = 0.79). SNPs in the DTNBP1 and G72/G30 genes were not significantly associated in any group. In conclusion, our data provide further evidence that specific genes may be involved in different schizophrenia subtypes and suggest that the PIP5K2A gene deserves further study as a general susceptibility gene for schizophrenia.  相似文献   

2.
Several linkage studies across multiple population groups provide convergent support for a susceptibility locus for schizophrenia--and, more recently, for bipolar disorder--on chromosome 6q13-q26. We genotyped 192 European-ancestry and African American (AA) pedigrees with schizophrenia from samples that previously showed linkage evidence to 6q13-q26, focusing on the MOXD1-STX7-TRARs gene cluster at 6q23.2, which contains a number of prime candidate genes for schizophrenia. Thirty-one screening single-nucleotide polymorphisms (SNPs) were selected, providing a minimum coverage of at least 1 SNP/20 kb. The association observed with rs4305745 (P=.0014) within the TRAR4 (trace amine receptor 4) gene remained significant after correction for multiple testing. Evidence for association was proportionally stronger in the smaller AA sample. We performed database searches and sequenced genomic DNA in a 30-proband subsample to obtain a high-density map of 23 SNPs spanning 21.6 kb of this gene. Single-SNP analyses and also haplotype analyses revealed that rs4305745 and/or two other polymorphisms in perfect linkage disequilibrium (LD) with rs4305745 appear to be the most likely variants underlying the association of the TRAR4 region with schizophrenia. Comparative genomic analyses further revealed that rs4305745 and/or the associated polymorphisms in complete LD with rs4305745 could potentially affect gene expression. Moreover, RT-PCR studies of various human tissues, including brain, confirm that TRAR4 is preferentially expressed in those brain regions that have been implicated in the pathophysiology of schizophrenia. These data provide strong preliminary evidence that TRAR4 is a candidate gene for schizophrenia; replication is currently being attempted in additional clinical samples.  相似文献   

3.
Population-based genetic association studies, popularly known as case-control studies, have continued to be the most preferred method for deciphering the genetic basis of various complex diseases, even in the post-human genome sequencing era. However, interpopulation differences in allele, genotype, and haplotype frequencies and linkage disequilibrium patterns lead to inconsistent results in candidate gene association studies. Therefore, for any meaningful disease association study, knowledge of the normative genetic background of the baseline population is a prerequisite. In addition, such genetic variation data also provide a ready-made menu of allele frequencies and linkage disequilibrium patterns of various polymorphisms in specific candidate genes in a particular population, which is a useful reference for further genetic association studies. Such genetic variation data are lacking for the Indian population, which represents about one-sixth of the world's population. In the present study we have reported the allele, genotype, and haplotype frequencies, Hardy-Weinberg equilibrium status, and linkage disequilibrium patterns of 12 polymorphisms in six candidate genes from the renin-angiotensin-aldosterone system among Indians. Because of their different history of origin, the Indian population is broadly divided into two subpopulations: North Indians (Caucasian Europeans) and South Indians (Dravidians). Considering this well-documented difference in gene pools, we have presented a comparative account of the normative genetic data of North Indian and South Indian populations with at least four individuals of urban and suburban origin from each of the representative states of northern and southern India.  相似文献   

4.
Schizophrenia is a severe psychiatric disease with complex etiology, affecting approximately 1% of the general population. Most genetics studies so far have focused on disease association with common genetic variation, such as single-nucleotide polymorphisms (SNPs), but it has recently become apparent that large-scale genomic copy-number variants (CNVs) are involved in disease development as well. To assess the role of rare CNVs in schizophrenia, we screened 54 patients with deficit schizophrenia using Affymetrix's GeneChip 250K SNP arrays. We identified 90 CNVs in total, 77 of which have been reported previously in unaffected control cohorts. Among the genes disrupted by the remaining rare CNVs are MYT1L, CTNND2, NRXN1, and ASTN2, genes that play an important role in neuronal functioning but--except for NRXN1--have not been associated with schizophrenia before. We studied the occurrence of CNVs at these four loci in an additional cohort of 752 patients and 706 normal controls from The Netherlands. We identified eight additional CNVs, of which the four that affect coding sequences were found only in the patient cohort. Our study supports a role for rare CNVs in schizophrenia susceptibility and identifies at least three candidate genes for this complex disorder.  相似文献   

5.
Several quantitative trait loci (QTL) for important reproductive traits (ovulation rate) have been identified on the porcine chromosome 15 (SSC15). To assist in the selection of positional candidate swine genes for these QTL on SSC15, twenty-one genes had already been assigned to SSC15 in a previous study in our lab, by using the radiation hybrid panel IMpRH. Further polymorphism studies were carried out on these positional candidate genes with four breeds of pigs (Duroc, Erhualian, Dahuabai and Landrace) harboring significant differences in reproduction traits. A total of nineteen polymorphisms were found in 21 genes. Among these, seven in six genes were used for association studies, whereby NRP2 polymorphism was found to be significantly (p < 0.05) associated with litter-size traits. NRP2 might be a candidate gene for pig-litter size based on its chromosome location (Du et al., 2006), significant association with litter-size traits and relationships with Sema and the VEGF super families.  相似文献   

6.
A highly significant association between a COMT haplotype and schizophrenia   总被引:35,自引:0,他引:35  
Several lines of evidence have placed the catechol-O-methyltransferase (COMT) gene in the limelight as a candidate gene for schizophrenia. One of these is its biochemical function in metabolism of catecholamine neurotransmitters; another is the microdeletion, on chromosome 22q11, that includes the COMT gene and causes velocardiofacial syndrome, a syndrome associated with a high rate of psychosis, particularly schizophrenia. The interest in the COMT gene as a candidate risk factor for schizophrenia has led to numerous linkage and association analyses. These, however, have failed to produce any conclusive result. Here we report an efficient approach to gene discovery. The approach consists of (i) a large sample size-to our knowledge, the present study is the largest case-control study performed to date in schizophrenia; (ii) the use of Ashkenazi Jews, a well defined homogeneous population; and (iii) a stepwise procedure in which several single nucleotide polymorphisms (SNPs) are scanned in DNA pools, followed by individual genotyping and haplotype analysis of the relevant SNPs. We found a highly significant association between schizophrenia and a COMT haplotype (P=9.5x10-8). The approach presented can be widely implemented for the genetic dissection of other common diseases.  相似文献   

7.
Several independent linkage studies have demonstrated that the 1q22 region is likely to harbor candidate schizophrenia susceptibility genes. Recently, some genetic variants within CAPON have been reported as exhibiting significant linkage disequilibrium to schizophrenia in Canadian familial-schizophrenia pedigrees. We examined nine single nucleotide polymorphisms (SNPs), which span an approximately 236-kb region of CAPON, in 664 schizophrenia cases and 941 controls in the Chinese Han population. We detected a significant difference in allele distributions of SNP rs348624 (P = 0.000017). Moreover, the overall frequency of haplotypes constructed from three SNPs including rs348624 showed significant difference between cases and controls (P = 0.000025). Our findings indicate that CAPON gene may be a candidate susceptibility gene for schizophrenia in Chinese Han population, and also provide further support for the potential importance of NMDAR-mediated glutamatergic transmission in the etiology of schizophrenia.  相似文献   

8.
The spirometric measurement of pulmonary function by measuring the forced expiratory volume in one second (FEV1) is a heritable trait that reflects the physiological condition of the lung and airways. Genome-wide linkage and association studies have identified a number of genes and genetic loci associated with pulmonary function. However, limited numbers of studies have been reported for Asian populations. In this study, we aimed to investigate genetic evidence of pulmonary function in a population in northeast Asia. We conducted a family-based association test with 706 GENDISCAN study participants from 72 Mongolian families to determine candidate genetic determinants of pulmonary function. For the replication, we chose seven candidate single nucleotide polymorphisms (SNPs) from the 5 loci, and tested 1062 SNPs for association with FEV1 from 2,729 subjects of the Korea Healthy Twin study. We identified TMEM132C as a potential candidate gene at 12q24.3, which is a previously reported locus of asthma and spirometric indices. We also found two adjacent candidate genes (UNC93A and TTLL2) in the 6q27 region, which has been previously identified as a pulmonary function locus in the Framingham cohort study. Our findings suggest that novel candidate genes (TMEM132C, UNC93A and TTLL2) in two different regions are associated with pulmonary function in a population in northeast Asia.  相似文献   

9.
Li D  He G  Xu Y  Duan Y  Gu N  Li X  Shi Y  Qin W  Feng G  He L 《Genetics and molecular biology》2009,32(4):729-730
ERBB3 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 3), encoding a receptor of neuregulin-1 (NRG1), has been considered a functional candidate gene for schizophrenia susceptibility. In order to investigate a relationship between ERBB3 gene and schizophrenia in the Chinese population, case-control and family-based studies were carried out in 470 cases matched by controls, and in 532 family trios. Our results failed to show any evidence of significant association between the ERBB3 rs2292238 polymorphism and schizophrenia.  相似文献   

10.
Changes in immunological system are one of dysfunctions reported in schizophrenia. Some changes based on an imbalance between Th1 and Th2 cytokines results from cytokine gene polymorphisms. Interleukin-4 gene (IL4) is considered as a potential candidate gene in schizophrenia association studies. The aim of the current case-control study was to examine whether the -590C/T (rs2243250) and -33C/T (rs2070874) IL4 gene polymorphisms are implicated in paranoid schizophrenia development in the Polish population. Genotyping of polymorphisms was performed by using PCR-RFLP technique. The genotypes and alleles distribution of both SNPs were analysed in patients (n = 182) and healthy individuals constituted the control group (n = 215). The connection between some clinical variables and studied polymorphisms has been examined as well. We did not revealed any association between the -590C/T and -33C/T polymorphisms and paranoid schizophrenia. In case of both SNPs the homozygous TT genotype was extremely rare. Both polymorphic sites of the IL4 gene were found to be in a very strong linkage disequilibrium. However we did not identify a haplotype predispose to paranoid schizophrenia. No associations were also observed between the clinical course and psychopathology of the disease and the genotypes of both analysed polymorphisms. Our results suggest that the polymorphisms -590C/T in IL4 gene promoter region and -33C/T in the 5'-UTR are not involved in the pathophysiology of paranoid schizophrenia in Polish residents.  相似文献   

11.
Located on chromosome 10q22‐q23, the human neuregulin3 (NRG3) is considered to be a strong positional and functional candidate gene for schizophrenia pathogenesis. Several case–control studies examining the association of polymorphisms in NRG3 with schizophrenia and/or related traits such as delusion have been reported recently in cohorts of Han Chinese, Ashkenazi Jews, Australians and white Americans of Western European ancestry. Thus, this study aimed to comprehensively investigate the association of NRG3 genetic variations with the risk of schizophrenia and smooth pursuit eye movement (SPEM) abnormality in a Korean population. Using TaqMan assay, six single‐nucleotide polymorphisms (SNPs) in the intronic region of NRG3 were genotyped and two major haplotypes were identified in 435 patients with schizophrenia as cases and 393 unrelated healthy individuals as controls. A total of 113 schizophrenia patients underwent an eye tracking task, and degree of SPEM abnormality was measured using the logarithmic values of the signal/noise (Ln S/N) ratio. Differences in frequency distributions were analyzed using logistic and regression models following various modes of genetic inheritance and controlling for age and sex as covariates. Subsequent analysis revealed that the frequency distributions of NRG3 polymorphisms and haplotypes were similar between schizophrenia patients and healthy controls of Korean ethnicity. Furthermore, no significant differences were observed between the genetic variants tested for SPEM abnormality. By elucidating a lack of association in a Korean population, findings from this study may contribute to the understanding of the genetic etiology focusing on the role of NRG3 in schizophrenia pathogenesis.  相似文献   

12.
Liu XY  Li M  Yang SY  Su B  Yin LD 《动物学研究》2011,32(5):499-503
精神分裂症是一种常见的复杂精神疾病.大量的实验证据表明,遗传因素在精神分裂症的发生中起到了重要的作用.截至目前,有报道称至少100个基因与精神分裂症相关,但它们在不同人群中的重复性不好.在这些基因中,RELN在多个人群中都被证实与精神分裂症相关,表明它可能是一个真实的易感基因.目前,在RELN基因上有很多个单核苷酸多态性位点被证实与精神分裂症相关,其中研究最多的是通过全基因组关联分析发现的在RELN基因第四个内含子中的单核苷酸多态性位点rs7341475,它被证明与精神分裂症的发生相关.为了验证该位点在中国人群中是否与精神分裂症相关,作者对来自中国玉溪的病例——对照样本(400位患者和400位正常人)进行了遗传分析.结果显示,在该样本中rs7341475与精神分裂症不相关,这表明rs7341475在中国人群中可能不是致病多态性位点.  相似文献   

13.
Kim JJ  Kim HH  Park JH  Ryu HJ  Kim J  Moon S  Gu H  Kim HT  Lee JY  Han BG  Park C  Kimm K  Park CS  Lee JK  Oh B 《Immunogenetics》2005,57(9):636-643
Asthma is a chronic inflammatory disorder of the airways, and a number of genetic loci are associated with the disease. Candidate gene association studies have been regarded as effective tools to study complex traits. Knowledge of the sequence variation and structure of the candidate genes is required for association studies. Thus, we investigated the genetic variants of 32 asthma candidate genes selected by colocalization of positional and functional candidate genes. We screened all exons and promoter regions of those genes using 12 healthy individuals and 12 asthma patients and identified a total of 418 single nucleotide polymorphisms (SNPs), including 270 known SNPs and 148 novel SNPs. Levels of nucleotide diversity varied from gene to gene (0.72×10−4–14.53×10−4), but the average nucleotide diversity between coding SNPs (cSNPs) and noncoding SNPs was roughly equivalent (4.63×10−4 vs 4.69×10−4). However, nucleotide diversity of cSNPs was strongly correlated to codon degeneracy. Nucleotide diversity was much higher at fourfold degenerate sites than at nondegenerate sites (9.42×10−4 vs 3.14×10−4). Gene-based haplotype analysis of asthma-associated genes in this study revealed that common haplotypes (frequency >5%) represented 90.5% of chromosomes, and they could be uniquely identified with five or fewer haplotype-tagging SNPs per gene. Therefore, our results may have important implications for the selection of asthma candidate genes and SNP markers for comprehensive association studies using large sample populations.  相似文献   

14.
Most genetic variants associated with complex diseases in humans are believed to have a small impact on risk. With traditional candidate gene/pathway approaches several associations with disease risk could be identified. However, now that genome-wide association studies are feasible, the question arises if there is still a need for these approaches. By using HapMap data, we evaluated to which extent commercially available microarrays cover, through linkage disequilibrium, all currently known genes and biological processes in different populations. Furthermore, we estimated the power to detect an association with any specific SNP. Our study shows that coverage of individual genes and pathways by current commercial genotyping platforms is satisfactory for the vast majority of RefSeq gene regions. However, depending on the gene or the population, there may still be a need for candidate gene approaches, especially when looking at polymorphisms with low allele frequencies.  相似文献   

15.
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Irreversible airflow limitation, both progressive and associated with an inflammatory response of the lungs to noxious particles or gases, is a hallmark of the disease. Cigarette smoking is the most important environmental risk factor for COPD, nevertheless, only approximately 20–30% of smokers develop symptomatic disease. Epidemiological studies, case-control studies in relatives of patients with COPD, and twin studies suggest that COPD is a genetically complex disease with environmental factors and many involved genes interacting together. Two major strategies have been employed to identify the genes and the polymorphisms that likely contribute to the development of complex diseases: association studies and linkage analyses. Biologically plausible pathogenetic mechanisms are prerequisites to focus the search for genes of known function in association studies. Protease-antiprotease imbalance, generation of oxidative stress, and chronic inflammation are recognized as the principal mechanisms leading to irreversible airflow obstruction and parenchymal destruction in the lung. Therefore, genes which have been implicated in the pathogenesis of COPD are involved in antiproteolysis, antioxidant barrier and metabolism of xenobiotic substances, inflammatory response to cigarette smoke, airway hyperresponsiveness, and pulmonary vascular remodelling. Significant associations with COPD-related phenotypes have been reported for polymorphisms in genes coding for matrix metalloproteinases, microsomal epoxide hydrolase, glutathione-S-transferases, heme oxygenase, tumor necrosis factor, interleukines 1, 8, and 13, vitamin D-binding protein and β-2-adrenergic receptor (ADRB2), whereas adequately powered replication studies failed to confirm most of the previously observed associations. Genome-wide linkage analyses provide us with a novel tool to identify the general locations of COPD susceptibility genes, and should be followed by association analyses of positional candidate genes from COPD pathophysiology, positional candidate genes selected from gene expression studies, or dense single nucleotide polymorphism panels across regions of linkage. Haplotype analyses of genes with multiple polymorphic sites in linkage disequilibrium, such as the ADRB2 gene, provide another promising field that has yet to be explored in patients with COPD. In the present article we review the current knowledge about gene polymorphisms that have been recently linked to the risk of developing COPD and/or may account for variations in the disease course.  相似文献   

16.
Several genes have been suggested as dyslexia candidates. Some of these candidate genes have been recently shown to be associated with literacy measures in sample cohorts derived from the general population. Here, we have conducted an association study in a novel sample derived from the Australian population (the Raine cohort) to further investigate the role of dyslexia candidate genes. We analysed markers, previously reported to be associated with dyslexia, located within the MRPL19/C2ORF3, KIAA0319, DCDC2 and DYX1C1 genes in a sample of 520 individuals and tested them for association with reading and spelling measures. Association signals were detected for several single nucleotide polymorphisms (SNPs) within DYX1C1 with both the reading and spelling tests. The high linkage disequilibrium (LD) we observed across the DYX1C1 gene suggests that the association signal might not be refined by further genetic mapping.  相似文献   

17.
Timing is a crucial aspect for survival and reproduction in seasonal environments leading to carefully scheduled annual programs of migration in many species. But what are the exact mechanisms through which birds (class: Aves) can keep track of time, anticipate seasonal changes, and adapt their behaviour? One proposed mechanism regulating annual behaviour is the circadian clock, controlled by a highly conserved set of genes, collectively called ‘clock genes’ which are well established in controlling the daily rhythmicity of physiology and behaviour. Due to diverse migration patterns observed within and among species, in a seemingly endogenously programmed manner, the field of migration genetics has sought and tested several candidate genes within the clock circuitry that may underlie the observed differences in breeding and migration behaviour. Among others, length polymorphisms within genes such as Clock and Adcyap1 have been hypothesised to play a putative role, although association and fitness studies in various species have yielded mixed results. To contextualise the existing body of data, here we conducted a systematic review of all published studies relating polymorphisms in clock genes to seasonality in a phylogenetically and taxonomically informed manner. This was complemented by a standardised comparative re-analysis of candidate gene polymorphisms of 76 bird species, of which 58 are migrants and 18 are residents, along with population genetics analyses for 40 species with available allele data. We tested genetic diversity estimates, used Mantel tests for spatial genetic analyses, and evaluated relationships between candidate gene allele length and population averages for geographic range (breeding- and non-breeding latitude), migration distance, timing of migration, taxonomic relationships, and divergence times. Our combined analysis provided evidence (i) of a putative association between Clock gene variation and autumn migration as well as a putative association between Adcyap1 gene variation and spring migration in migratory species; (ii) that these candidate genes are not diagnostic markers to distinguish migratory from sedentary birds; and (iii) of correlated variability in both genes with divergence time, potentially reflecting ancestrally inherited genotypes rather than contemporary changes driven by selection. These findings highlight a tentative association between these candidate genes and migration attributes as well as genetic constraints on evolutionary adaptation.  相似文献   

18.
A number of studies have pointed to the association of BDNF (brain-derived neurotrophic factor) and DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, 32 kDa) with schizophrenia. The purpose of this study was to determine whether these two genes are involved in the pathogenesis of schizophrenia in the Malay population. Two single nucleotide polymorphisms Val66Met of BDNF, -2036C>G and g.1238delG of DARPP-32 were genotyped in the Malay population in 200 patients with schizophrenia and 256 healthy controls. Analysis of allele and genotype frequencies in these two groups revealed no significant association of BDNF or DARPP-32 polymorphisms with schizophrenia in Malays. This is the first such association study in the Malay population.  相似文献   

19.
Genetic variation in the human population may lead to functional variants of genes that contribute to risk for common chronic diseases such as cancer. In an effort to detect such possible predisposing variants, we constructed haplotypes for a candidate gene and tested their efficacy in association studies. We developed haplotypes consisting of 14 biallelic neutral-sequence variants that span 142 kb of the ATM locus. ATM is the gene responsible for the autosomal recessive disease ataxia-telangiectasia (AT). These ATM noncoding single-nucleotide polymorphisms (SNPs) were genotyped in nine CEPH families (89 individuals) and in 260 DNA samples from four different ethnic origins. Analysis of these data with an expectation-maximization algorithm revealed 22 haplotypes at this locus, with three major haplotypes having frequencies > or = .10. Tests for recombination and linkage disequilibrium (LD) show reduced recombination and extensive LD at the ATM locus, in all four ethnic groups studied. The most striking example was found in the study population of European ancestry, in which no evidence for recombination could be discerned. The potential of ATM haplotypes for detection of genetic variants through association studies was tested by analysis of 84 individuals carrying one of three ATM coding SNPs. Each coding SNP was detected by association with an ATM haplotype. We demonstrate that association studies with haplotypes for candidate genes have significant potential for the detection of genetic backgrounds that contribute to disease.  相似文献   

20.
Aggressive periodontitis (AgP) is characterized by the early onset of the rapid and progressive destruction of the alveolar bone. We investigated the correlation of single nucleotide polymorphisms (SNPs) in candidate genes with AgP in the Japanese population in order to determine the genetic risk factors for this complex disease. Among 11 genes related to bone formation and resorption, 43 known SNPs were tested in 98 case and 88 control samples for association with AgP by using SNP genotyping techniques. Among these, three polymorphisms located in the colony stimulating factor 1 (CSF1) gene showed a positive association with AgP. This is the first case of an association between a CSF1 polymorphism and a human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号