首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscle force-generating properties are often derived from cadaveric studies of muscle architecture. While the relative sizes of muscles at a single upper limb joint have been established in cadaveric specimens, the relative sizes of muscles across upper limb joints in living subjects remain unclear. We used magnetic resonance imaging to measure the volumes of the 32 upper limb muscles crossing the glenohumeral joint, elbow, forearm, and wrist in 10 young, healthy subjects, ranging from a 20th percentile female to a 97th percentile male, based on height. We measured the volume and volume fraction of these muscles. Muscles crossing the shoulder, elbow, and wrist comprised 52.5, 31.4, and 16.0% of the total muscle volume, respectively. The deltoid had the largest volume fraction (15.2%+/-1%) and the extensor indicis propius had the smallest (0.2%+/-0.05%). We determined that the distribution of muscle volume in the upper limb is highly conserved across these subjects with a three-fold variation in total muscle volumes (1427-4426cm(3)). When we predicted the volume of an individual muscle from the mean volume fraction, on average 85% of the variation among subjects was accounted for (average p=0.0008). This study provides normative data that forms the basis for investigating muscle volumes in other populations, and for scaling computer models to more accurately represent the muscle volume of a specific individual.  相似文献   

2.
Aging is associated with the loss of muscle volume (MV) and force leading to difficulties with activities of daily living. However, the relationship between upper limb MV and joint strength has not been characterized for older adults. Quantifying this relationship may help our understanding of the functional declines of the upper limb that older adults experience. Our objective was to assess the relationship between upper limb MV and maximal isometric joint moment-generating capacity (IJM) in a single cohort of healthy older adults (age ≥ 65 years) for 6 major functional groups (32 muscles). MV was determined from MRI for 18 participants (75.1±4.3 years). IJM at the shoulder (abduction/adduction), elbow (flexion/extension), and wrist (flexion/extension) was measured. MV and IJM measurements were compared to previous reports for young adults (28.6±4.5 years). On average older adults had 16.5% less total upper limb MV compared to young adults. Additionally, older adult wrist extensors composed a significantly increased percentage of upper limb MV. Older adult IJM was reduced across all joints, with significant differences for shoulder abductors (p<0.0001), adductors (p=0.01), and wrist flexors (p<0.0001). Young adults were strongest at the shoulder, which was not the case for older adults. In older adults, 40.6% of the variation in IJM was accounted for by MV changes (p≤0.027), compared to 81.0% in young adults. We conclude that for older adults, MV and IJM are, on average, reduced but the significant linear relationship between MV and IJM is maintained. These results suggest that older adult MV and IJM cannot be simply scaled from young adults.  相似文献   

3.
This study examined the variability and regularity of maximum isometric moment production of the plantar flexors in young and old subjects. It was hypothesized that in the development of maximum isometric moments there would be greater regularity in the moment profiles for older subjects compared with young subjects, due to the reduced number of motor units present in elderly muscle. Two groups of subjects produced three maximal isometric plantar flexions (young: n=11, mean age 23.8+/-2.8 years, mean mass 81.2+/-10.4 kg, mean height 1.78+/-0.05 m; elderly: n=13, mean age 74.0+/-3.3 years, mean mass 78.5+/-3.4 kg, mean height 1.73+/-0.05 m). The plateau of the moment-time curve was analyzed for each trial. A repeat measures analysis of variance showed the young subjects produced statistically greater peak plantar flexion moments than the elderly subjects, but similar coefficients of variation. Signal regularity was determined by computing the signal's approximate entropy, which demonstrated that the older group had greater regularity in their generation of moment profiles. The hypothesis was accepted, with a potential explanation for this increased regularity in old age being the reduced number of motor units to coordinate.  相似文献   

4.
In the pediatric shoulder, injury and pathology can disrupt the muscle force balance, resulting in severe functional losses. As little data exists pertaining to in vivo pediatric shoulder muscle function, musculoskeletal data are crucially needed to advance the treatment of pediatric shoulder pathology/injury. Therefore, the purpose of this study was to develop a pediatric database of in vivo volumes for the major shoulder muscles and correlate these volumes with maximum isometric flexion/extension, internal/external rotation, and abduction/adduction joint moments. A methodology was developed to derive 3D shoulder muscle volumes and to divide the deltoid into sub-units with unique torque producing capabilities, based on segmentation of three-dimensional magnetic resonance images. Eleven typically developing children/adolescents (4F/7M, 12.0±3.2 years, 150.8±16.7 cm, 49.2±16.4 kg) participated. Correlation and regression analyses were used to evaluate the relationship between volume and maximum, voluntary, isometric joint torques. The deltoid demonstrated the largest (30.4±1.2%) and the supraspinatus the smallest (4.8±0.5%) percent of the total summed volume of all six muscles evaluated. The anterior and posterior deltoid sections were 43.4±3.9% and 56.6±3.9% of the total deltoid volume. The percent volumes were highly consistent across subjects. Individual muscle volumes demonstrated moderate-high correlations with torque values (0.70–0.94, p<0.001). This study presents a comprehensive database documenting normative pediatric shoulder muscle volume. Using these data a clear relationship between shoulder volume and the torques they produce was established in all three rotational degrees-of-freedom. This study furthers the understanding of shoulder muscle function and serves as a foundation for evaluating shoulder injury/pathology in the pediatric/adolescent population.  相似文献   

5.
PURPOSE: The aetiology of tennis elbow has remained uncertain for more than a century. To examine muscle imbalance as a possible pathophysiological factor requires a reliable method of assessment. This paper describes the development of such a method and its performance in healthy subjects. We propose a combination of surface and fine-wire EMG of shoulder and forearm muscles and wrist strength measurements as a reliable tool for assessing muscle imbalance relevant to the pathophysiology of tennis elbow. METHODS: Six healthy volunteers participated. EMG data were acquired at 50% maximal voluntary isometric contraction from five forearm muscles during grip and three shoulder muscles during external rotation and abduction, and analysed using normalized median frequency slope as a fatigue index. Wrist extension/flexion strength was measured using a purpose-built dynamometer. RESULTS: Significant negative slope of median frequency was found for all muscles, with good reproducibility, and no significant difference in slope between the different muscles of the shoulder and the wrist. (Amplitude slope showed high variability and was therefore unsuitable for this purpose.) Wrist flexion was 27+/-8% stronger than extension (mean+/-SEM, p=0.006). CONCLUSION: This is a reliable method for measuring muscle fatigue in forearm and shoulder. EMG and wrist strength studies together can be used for assessing and identifying the muscle balance in the wrist-forearm-shoulder chain.  相似文献   

6.
Study of the mechanics of trunk twisting is special interest given epidemiological evidence linking occupational twisting to increased incidence of low back pain. An anatomically detailed, three-dimensional model of the trunk (rib cage, pelvis, five lumbar vertebrae and 50 muscles), was used to predict maximum axial trunk torque. Predicted axial torques were compared with measured torques. Thirty-one (10 male and 21 female) subjects performed maximum effort isometric twisting exertions, at 0° of twist and ±30° of twist together with dynamic exertions, at 30° s−1 and 60° s−1. Females were able to generate approximately two-thirds of the torque of males (males, 97 Nm; females 60 Nm, isometric at 0°). When the trunk was prerotated to 30°, subjects were able to generate greater torque when the effort was toward the 0° position (approximately 105 Nm by males and 68 Nm by females). Experimental data indicated that velocity of rotation and amount of twist are important modulators of axial torque. Changes in muscle length were demonstrated to be minimal from model output as most muscle length changes during a twist from 0° to 30°, measured between the pelvis and the shoulder harness, were less than 1%, although some portions of the abdominal obliques underwent a length excursion of 5%. The small changes in the individual muscle force components that contribute to twist, i.e. the muscle unit vector about the axial twist axis and its moment arm that change as a function of twisted position, do not entirely account for the measured differences in torque, suggesting that additional mechanisms influence axial torque generation.  相似文献   

7.
A deterministic model was developed and validated to calculate instantaneous ankle and knee moments during walking using processed EMG from representative muscles, instantaneous joint angle as a correlate of muscle length and angular velocity as a correlate of muscle velocity, and having available total instantaneous joint moments for derivation of certain model parameters. A linear regression of the moment on specifically processed EMG, recorded while each subject performed cycled isometric calibration contractions, yielded the constants for a basic moment-EMG relationship. Using the resultant moment for optimization, the predicted moment was proportionally augmented for longer muscle lengths and reduced for shorter lengths. Similarly, the predicted moment was reduced for shortening velocities and increased if the muscle was lengthening. The plots of moments predicted using the full model and those calculated from link segment mechanics followed each other quite closely. The range of root mean square errors were: 3.2-9.5 Nm for the ankle and 4.7-13.0 Nm for the knee.  相似文献   

8.
During maximal efforts, antagonistic activity can significantly influence the joint moment. During maximal voluntary "isometric" contractions, certain joint rotation can not be avoided. This can influence the estimation of the antagonistic moment from the EMG activity. Our study aimed to quantify the influence on the calculated agonistic moment produced during maximal voluntary isometric plantarflexions (a) when estimating antagonistic moments at different ankle angles and (b) when placing the EMG electrodes at different portions over the m. tibialis anterior. Ten subjects performed maximal voluntary isometric plantarflexions at 90 degrees ankle angle. In order to estimate the antagonistic moment, submaximal isometric dorsiflexions were performed at various ankle angles. Moment and EMG signals from mm. triceps surae and tibialis anterior were measured. The RMS differences between plantarflexors moment calculated considering the antagonistic cocontraction estimated at the same ankle angle at which the maximal plantarflexion moment was achieved and at different ankle angles ranged from 0.10 to 2.94 Nm. The location of the electrodes led to greater RMS differences (2.35-5.18 Nm). In conclusion, an angle 10 degrees greater than the initial plantarflexion angle is enough to minimize the effect of the change in length of the m. tibialis anterior during the plantarflexion on the estimation of the plantarflexors moment. The localisation of the electrodes over the m. tibialis anterior can influence the estimation of its cocontraction during maximal plantarflexion efforts.  相似文献   

9.
Tripping causes a forward angular momentum that has to be arrested to prevent a fall. The support limb, contralateral to the obstructed swing limb, can contribute to an adequate recovery by providing time and clearance for proper positioning of the recovery limb, and by restraining the angular momentum of the body during push-off. The present study investigated how such a contribution is achieved by the support limb in terms of response times and muscle moment generation, in order to provide more insight in the requirements for successful recovery after tripping. Twelve young adults repeatedly walked over a platform in which 21 obstacles were hidden. Each subject was tripped over one of these obstacles during mid-swing in at least five trials. Kinematics, dynamics and muscle activity were measured. Very rapid responses were seen in the muscles of the support limb (approximately 65 ms), causing fast increases in muscle moments in the joints during the primary phase of recovery. Especially a large ankle plantar flexion moment (204 Nm), a knee flexion moment (-54 Nm) and a hip extension moment (52 Nm), generated by triceps surae and hamstring muscle activity, brought about the necessary push-off reaction and simultaneously caused a restraining of the forward angular momentum of the body. These required joint moments could be a problem for the elderly, who might not be able to generate such powerful moments. Strength training in these muscle groups may be indicated in elderly subjects to reduce the risk of falling after a trip.  相似文献   

10.
Although the contributions of passive structures to stability of the elbow have been well documented, the role of active muscular resistance of varus and valgus loads at the elbow remains unclear. We hypothesized that muscles: (1) can produce substantial varus and valgus moments about the elbow, and (2) are activated in response to sustained varus and valgus loading of the elbow. To test the first hypothesis, we developed a detailed musculoskeletal model to estimate the varus and valgus moment-generating capacity of the muscles about the elbow. To test the second hypothesis, we measured EMGs from 11 muscles in four subjects during a series of isometric tasks that included flexion, extension, varus, and valgus moments about the elbow. The EMG recordings were used as inputs to the elbow model to estimate the contributions of individual muscles to flexion-extension and varus-valgus moments. Analysis of the model revealed that nearly all of the muscles that cross the elbow are capable of producing varus or valgus moments; the capacity of the muscles to produce varus moment (34 Nm) and valgus moment (35 Nm) is roughly half of the maximum flexion moment (70 Nm). Analysis of the measured EMGs showed that the anconeus was the most significant contributor to valgus moments and the pronator teres was the largest contributor to varus moments. Although our results show that muscles were activated in response to static varus and valgus loads, their activations were modest and were not sufficient to balance the applied load.  相似文献   

11.
We determined the repeatability and correlations between force, endurance and muscle activity during isometric contractions over three years. Twenty-six subjects, with and without complaints of the shoulder and neck, performed standardized maximal and submaximal shoulder-abduction contractions and wrist extension-contractions at yearly intervals from 1997 to 1999. Peak forces developed during maximal contraction and the endurance times of submaximal contractions during shoulder abduction and wrist extension were measured. Electromyography (EMG) of muscle activity was recorded bilaterally from the upper trapezius, middle deltoid, and forearm extensor muscles. Root mean square EMG amplitudes were calculated. We found statistically significant associations between peak forces developed during wrist extension and shoulder abduction, and between endurance times of submaximal wrist extension and shoulder abduction. No statistically significant changes in peak force and EMG(peak) were found over the measurement years. The responses were not statistically significantly influenced by gender, or neck and shoulder pain. However, we observed considerable intra-individual variation in the inter-year measurements particularly for the responses to submaximal contraction. Such large variations represent a challenge when attempting to use the responses to interpret the effects of therapies.  相似文献   

12.
We have quantified individual muscle force and moment contributions to net joint moments and estimated the operating ranges of the individual muscle fibers over the full range of motion for elbow flexion/extension and forearm pronation/supination. A three dimensional computer graphics model was developed in order to estimate individual muscle contributions in each degree of freedom over the full range of motion generated by 17 muscles crossing the elbow and forearm. Optimal fiber length, tendon slack length, and muscle specific tension values were adjusted within the literature range from cadaver studies such that the net isometric joint moments of the model approximated experimental joint moments within one standard deviation. Analysis of the model revealed that the muscles operate on varying portions of the ascending limb, plateau region, and descending limb of the force-length curve. This model can be used to further understand isometric force and moment contributions of individual muscles to net joint moments of the arm and forearm and can serve as a comprehensive reference for the forces and moments generated by 17 major muscles crossing the elbow and wrist.  相似文献   

13.
An EMG-driven muscle model for determining muscle force-time histories during gait is presented. The model, based on Hill's equation (1938), incorporates morphological data and accounts for changes in musculotendon length, velocity, and the level of muscle excitation for both concentric and eccentric contractions. Musculotendon kinematics were calculated using three-dimensional cinematography with a model of the musculoskeletal system. Muscle force-length-EMG relations were established from slow isokinetic calibrations. Walking muscle force-time histories were determined for two subjects. Joint moments calculated from the predicted muscle forces were compared with moments calculated using a linked segment, inverse dynamics approach. Moment curve correlations ranged from r = 0.72 to R = 0.97 and the root mean square (RMS) differences were from 10 to 20 Nm. Expressed as a relative RMS, the moment differences ranged from a low of 23% at the ankle to a high of 72% at the hip. No single reason for the differences between the two moment curves could be identified. Possible explanations discussed include the linear EMG-to-force assumption and how well the EMG-to-force calibration represented excitation for the whole muscle during gait, assumptions incorporated in the muscle modeling procedure, and errors inherent in validating joint moments predicted from the model to moments calculated using linked segment, inverse dynamics. The closeness with which the joint moment curves matched in the present study supports using the modeling approach proposed to determine muscle forces in gait.  相似文献   

14.
Upper limb loadings of gait with crutches   总被引:1,自引:0,他引:1  
Long-term crutch users and patients with arthritis are particularly susceptible to upper limb joint degeneration during aided gait. The function of the walking aid for stability, support, and restraint/propulsion must be optimized with the upper limb loadings caused by the aids. Post-operative total hip replacement (THR) patients, tibial fracture, and paraplegic subjects using sticks and elbow crutches were analyzed in this study. Elbow and shoulder joint centers and aid orientations were monitored simultaneously in three dimensions and combined with aid forces to determine upper limb moment loadings. Three loading effects were observed: tendency for the aids to cause 1) the elbow to flex and shoulder to extend, 2) the elbow and shoulder to extend, and 3) the shoulder to abduct. Moment values of up to 0.10 Nm per body weight (BW) causing the shoulder to extend were measured, i.e., of similar magnitude to the moments at the hip in unaided gait. A modification of the elbow crutch, designed to improve medial-lateral stability, was unsuccessful in use due to wrist instability. This reinforced the requirement that crutch designs integrate the aid's function in gait with the ability of the upper limb joints to balance the applied loads.  相似文献   

15.
Tissue overloading is a major contributor to shoulder musculoskeletal injuries. Previous studies attempted to use regression-based methods to predict muscle activities from shoulder kinematics and shoulder kinetics. While a regression-based method can address co-contraction of the antagonist muscles as opposed to the optimization method, most of these regression models were based on limited shoulder postures. The purpose of this study was to develop a set of regression equations to predict the 10th percentile, the median, and the 90th percentile of normalized electromyography (nEMG) activities from shoulder postures and net shoulder moments. Forty participants generated various 3-D shoulder moments at 96 static postures. The nEMG of 16 shoulder muscles was measured and the 3-D net shoulder moment was calculated using a static biomechanical model. A stepwise regression was used to derive the regression equations. The results indicated the measured range of the 3-D shoulder moment in this study was similar to those observed during work requiring light physical capacity. The r2 of all the regression equations ranged between 0.228 and 0.818. For the median of the nEMG, the average r2 among all 16 muscles was 0.645, and the five muscles with the greatest r2 were the three deltoids, supraspinatus, and infraspinatus. The results can be used by practitioners to estimate the range of the shoulder muscle activities given a specific arm posture and net shoulder moment.  相似文献   

16.
The extents to which decreased muscle size or activation are responsible for the decrease in strength commonly observed with aging remain unclear. Our purpose was to compare muscle isometric strength [maximum voluntary contraction (MVC)], cross-sectional area (CSA), specific strength (MVC/CSA), and voluntary activation in the ankle dorsiflexor muscles of 24 young (32 +/- 1 yr) and 24 elderly (72 +/- 1 yr) healthy men and women of similar physical activity level. Three measures of voluntary muscle activation were used: the central activation ratio [MVC/(MVC + superimposed force)], the maximal rate of voluntary isometric force development, and foot tap speed. Men had higher MVC and CSA than did women. Young men had higher MVC compared with elderly men [262 +/- 19 (SE) vs. 197 +/- 22 N, respectively], whereas MVC was similar in young and elderly women (136 +/- 15 vs. 149 +/- 16 N, respectively). CSA was greater in young compared with elderly subjects. There was no age-related impairment of specific strength, central activation ratio, or the rate of voluntary force development. Foot tap speed was reduced in elderly (34 +/- 1 taps/10 s) compared with young subjects (47 +/- 1 taps/10 s). These results suggest that isometric specific strength and the ability to fully and rapidly activate the dorsiflexor muscles during a single isometric contraction were unimpaired by aging. However, there was an age-related deficit in the ability to perform rapid repetitive dynamic contractions.  相似文献   

17.
During maximum effort, the supraspinatus muscle contributes approximately 50% of the torque need to elevate the arm, but this has not been examined at sub-maximal levels. The purpose of this study was to determine the contribution of the supraspinatus muscle to shoulder elevation at sub-maximal levels. Seven healthy subjects (four males, three females) performed isometric ramp contractions at the shoulder. Middle deltoid electromyography (EMG) and force applied at the wrist were collected before and after a suprascapular nerve block. For the same level of deltoid EMG, less external force will be measured after the nerve block as the supraspinatus muscle no longer contributes. The difference between the EMG/force curve was the contribution of the supraspinatus muscle. The supraspinatus contributed 40%, 95% CI [32%–48%], to shoulder elevation. The effect of angle (p = .67) and % maximal voluntary contraction (p = .13) on supraspinatus contribution were not significant. The maximum is slightly less than reported in a previous suprascapular nerve block study using maximal contractions. The results from this study can be used to assess supraspinatus contribution in rotator cuff tears, after rehabilitation interventions, and as a restraint in computation modelling.  相似文献   

18.
This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.  相似文献   

19.
The purpose of this study was to examine whether fatigue of postural muscles might influence the coordination between segmental posture and movement. Seven healthy adults performed series of fifteen fast wrist flexions and extensions while being instructed to keep a dominant upper limb posture as constant as possible. These series of voluntary movements were performed before and after a fatiguing submaximal isometric elbow flexion, and also with or without the help of an elbow support. Surface EMG from muscles Delto?deus anterior, Biceps brachii, Triceps brachii, Flexor carpi ulnaris, Extensor carpi radialis were recorded simultaneously with wrist, elbow and shoulder accelerations and wrist and elbow displacements. Fatigue was evidenced by a shift of the elbow and shoulder muscles EMG spectra towards low frequencies. Kinematics of wrist movements and corresponding activations of wrist prime-movers, as well as the background of postural muscle activation before wrist movement were not modified. There were only slight changes in timing of postural muscle activations. These data indicate that postural fatigue induced by a low-level isometric contraction has no effect on voluntary movement and requires no dramatic adaptation in postural control.  相似文献   

20.
Active females demonstrate increased risk for musculoskeletal injuries relative to equivalently-trained males. Although gender differences in factors such as passive laxity, skeletal geometry and kinematics have been examined, the effect of gender on active muscle stiffness has not been reported. Stiffness of the active quadriceps and hamstrings musculature were recorded during isometric knee flexion and extension exertions from twelve male and eleven female subjects. A second-order biomechanical model of joint dynamics was used to quantify stiffness from the transient motion response to an angular perturbation of the lower-leg. Female subjects demonstrated reduced active stiffness relative to male subjects at all torque levels, with levels 56-73% of the males. Effective stiffness increased linearly with the torque load, with stiffness increasing at a rate of 3.3 Nm/rad per unit of knee moment in knee flexion exertions (hamstrings) and 6.6 Nm/rad per unit of knee moment extension exertions (quadriceps). To account for gender differences in applied moment associated with leg mass, regressions analyses were completed that demonstrated a gender difference in the slope of stiffness-versus-knee moment relation. Further research is necessary to identify the cause of the observed biomechanical difference and implications for controlling injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号