首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Selenate and selenite injected intravenously into rats were speciated by the HPLC–ICP MS method with use of an enriched stable isotope as the tracer. In dose–relation experiments, 82Se-enriched selenate or selenite was injected intravenously into male Wistar rats of 8 weeks of age (three rats/group) at single doses of 10, 25, 50, 100 and 200 μg/kg body weight for the selenate group, and 2, 5, 10, 25 and 50 μg/kg body weight for the selenite group. The animals were sacrificed 1 or 24 h later, and the concentrations and distributions of 82Se in the liver, kidneys, serum, and urine remaining in the bladder or 24-h urine were determined. In time-course experiments, 82Se-enriched selenate and selenite were injected at doses of 50 and 10 μg/kg body weight, respectively, and the animals were sacrificed 5, 15, 30, 60 and 180 min later. It was suggested that selenate is directly taken up by the liver with an efficiency of approximately 1/2 compared with selenite, the latter being taken up by the liver after being metabolized to selenide in red blood cells. Although selenate and selenite were metabolized differently in the bloodstream, and also a part of only selenate was excreted directly into the urine, the 82Se taken up by the liver was shown to be metabolized in a manner indistinguishable between selenate and selenite. 82Se of selenite origin but not of selenate origin was suggested to undergo redox reaction in the bloodstream. These results suggest that although parenteral selenate is utilized less efficiently by the body, it is utilized in the liver in a similar manner to selenite much more safely.  相似文献   

2.
3.
Cultures of a purple nonsulfur bacterium, Rhodobacter sphaeroides, amended with approximately 1 or approximately 100 ppm selenate or selenite, were grown phototrophically to stationary phase. Analyses of culture headspace, separated cells, and filtered culture supernatant were carried out using gas chromatography, X-ray absorption spectroscopy, and inductively coupled plasma spectroscopy-mass spectrometry, respectively. While selenium-amended cultures showed much higher amounts of SeO(3)(2-) bioconversion than did analogous selenate experiments (94% uptake for SeO(3)(2-) as compared to 9.6% for SeO(4)(2-)-amended cultures from 100-ppm solutions), the chemical forms of selenium in the microbial cells were not very different except at exposure to high concentrations of selenite. Volatilization accounted for only a very small portion of the accumulated selenium; most was present in organic forms and the red elemental form.  相似文献   

4.
Pot culture experiments containing sand and soil, at two levels of mercury (2 and 5 g mL-1) added through irrigation with increasing supplementation of selenium (selenite and selenate) led to a decrease in the uptake of mercury by tomato (Lycopersicum esculentum) plant. Both the forms of selenium (selenite and selenate) were found to be equally effective in reducing the mercury accumulation by plants. The observed reduction pattern of mercury accumulation in plant tissues has been discussed on the basis of the formation of insoluble HgSe complex in soil-root environment.  相似文献   

5.
Shiobara Y  Ogra Y  Suzuki KT 《Life sciences》2000,67(25):3041-3049
Male Wistar rats were fed a diet containing selenium (Se) in the form of 82Se-enriched selenite at the adequate concentration of 0.2 microg Se/g diet, i.e. a Se-deficient diet (<0.03 microg Se/g) fortified with 82Se-enriched selenite, from 5 weeks of age for 20 days, and the systemic disposition of the labelled Se and exchange of endogenous naturally occurring Se for the labelled Se were monitored in four organs. Features characteristic of each organ in terms of Se metabolism were revealed by plotting the disposition of 82Se and exchange of endogenous Se for 82Se against the number of days of feeding 82Se-selenite. Labelled Se amounted to 83.7, 80.8, 73.2 and 41.9% of the total Se in the liver, kidneys, testes and brain, respectively, after feeding 82Se-selenite for 20 days, suggesting that the disposition and exchange were most efficient in the liver but least efficient in the brain. However, when the weight gain of the four organs during the feeding period was taken into consideration, the apparent higher exchange was concluded to be caused by weight gain, i.e., more efficient uptake of the labelled Se by proliferating cells than non-proliferating cells in the liver, kidneys and testes. On the other hand, the uptake and exchange in non-proliferating cells were greater in the brain than in the other organs, especially in the late observation period. The relative metabolic turnover rates of selenoproteins were shown to be easy to determine from the relative exchange rates of endogenous Se for exogenous Se in the distribution profiles of Se obtained by the HPLC-ICP MS method.  相似文献   

6.
In an attempt to address the role of biological behavior on Se uptake by soybean crop and the genotype effects, experiments with time and concentration sequences of Se uptake by seedlings in Hoagland solution are conducted using selenite and selenate respectively. Two soybean cultivars Tong-ai 405 (TA) and Qidong Green-skin (QG) are used as different genotypes. In presence of selenite, Se uptake by both roots and shoots exhibited a linear increase with the growing time at 5 M and with the solution Se concentrations. However, in presence of selenate, the linear response to growing time is only valid before 24 h of growing. While root Se uptake is much slower under selenate than under selenite in the time sequence experiment, shoot Se levels are similar between the two different Se form treatments. Nevertheless, in the experiment of concentration sequence, either root Se or shoot Se responses linearly to solution Se concentration regardless of the Se forms supplied. A big discrepancy of root Se level with a similarity of shoot Se between the two cultivars is observed in the concentration sequence experiment. This supports a much faster passive uptake of selenite but more or less an active uptake of selenate by soybean seedlings. Comparatively, cultivars TA have a consistently higher Se concentration than QG both in roots and shoots under selenate, while no difference of concentration ratio of shoot to root is recognized between them. The higher Se level in seed grains, therefore, may be accounted for not by Se transport form root to shoot but by greater ability of Se uptake and retention under selenate by the former cultivar. Therefore, not only forms of Se supply but also genotype difference affects the Se bioavailability by different soybean cultivars. This should be taken into account for screening the high Se-efficiency plants or cultivars to improve the Se supply of the food chain.  相似文献   

7.
Summary Desulfovibrio desulfuricans (DSM 1924) can be adapted to grow in the presence of 10 mM selenate or 0.1 mM selenite. This growth occurred in media containing formate as the electron donor and either fumarate or sulfate as the electron acceptor. As determined by electron microscopy with energy-dispersive X-ray analysis, selenate and selenite were reduced to elemental selenium which accumulated inside the cells. Selenium granules resulting from selenite metabolism were cytoplasmic while granules of selenium resulting from selenate reduction appeared to be in the periplasmic region. The accumulation of red elemental selenium in the media following stationary phase resulted from cell lysis with the liberation of selenium granules. Growth did not occur with either selenate or selenite as the electron acceptor and13C nuclear magnetic resonance indicated that neither selenium oxyanion interfered with fumarate respiration. At 1 M selenate and 100 M selenite, reduction byD. desulfuricans was 95% and 97%, respectively. The high level of total selenate and selenite reduced indicated the suitability ofD. desulfuricans for selenium detoxification.  相似文献   

8.
The AIN-93 reformulation of the AIN-76A rodent diet includes a change in selenium supplement from sodium selenite to sodium selenate to reduce dietary lipid peroxidation. A change to selenate as the standard form of Se in rat diets would render results from previous work using selenite less relevant for comparison with studies using the AIN-93 formulation. To critically examine the rationale for the AIN-93 recommendation, we prepared Torula yeast basal diets patterned as closely as possible after the AIN-93 formulation and supplemented with 0, 0.15 (adequate), or 2.0 (high) mg selenium/kg diet as sodium selenite or sodium selenate. Livers isolated from male Sprague-Dawley rats fed these diets for 15 wk showed no differences in thiobarbituric acid-reactive substances or lipid hydroperoxides measured with the ferrous oxidation in xylenol orange method. Lipids isolated from samples of high-selenate and high-selenite diets showed no differences in conjugated dienes. The addition of selenate or selenite to soybean oil did not result in an altered Oil Stability Index. These results demonstrate that selenate is not less likely than selenite to cause oxidation of other dietary components. Benefits of selenate over selenite in the diets of rodents remain to be demonstrated. Results included in this paper were presented at the meeting of Experimental Biology 98, San Francisco, CA, April 18–22, 1998, and published in abstract form (Moak, M. A., Johnson, B. L., & Christensen, M. J. [1998] On the AIN-93G recommendation for selenium. FASEB J. 12, A824).  相似文献   

9.
10.
11.
Iwata T  Uchida S  Hori M  Sakai K  Towatari T  Kido H 《Life sciences》1999,65(17):1725-1732
The kidney is the major target of parathyroid hormone (PTH), and PTH influences the urinary excretion of calcium, phosphate and hydrogen ions. It was previously reported that the urinary, excretion of N-acetyl-beta-D-glucosaminidase (NAG), a lysosomal enzyme, transiently increases after human PTH (hPTH) (1-34) infusion in normal subjects and idiopathic hypoparathyroidism patients, but not in pseudohypoparathyroidism type I patients. Here we report that intravenous infusion of hPTH(1-34) to rats transiently increased the urinary excretion of various lysosomal enzymes, such as beta-glucuronidase and acid phosphatase as well as NAG. However, it did not affect the urinary excretion of tubular brush border membrane enzymes, i.e. alkaline phosphatase, leucine aminopeptidase and gamma-glutamyl transpeptidase. Human PTH(1-34) dose-dependently increased the urinary excretion of NAG in rats with a peak at 30 min, which returned to a baseline within 60 min. The increase in the urinary NAG excretion caused by hPTH(1-34) positively correlated with the increase in the urinary cAMP excretion (r = 0.844, p < 0.01), and infusion of dibutyryl cAMP at a dose of 20 mg/kg similarly increased the urinary excretion of NAG. These results suggested that the increase in the urinary excretion of lysosomal enzymes caused by hPTH(1-34) may be a functional response to hPTH(1-34) occurring in the renal tubules via PTH signaling pathway.  相似文献   

12.
Abstract. The effect of SeO3 and SeO4 on NO3 assimilation in 8-d-old barley (Hordeum vulgare L.) seedlings was studied over a 24-h period. Selenite at 0.1 mol. m? in the uptake solutions severely inhibited the induction of NO3 uptake and active nitrate reductases. Selenate, at 1.0 mol m?3 in the nutrient solution, had little effect on induction of activities of these systems until after 12 h; however, when the seedlings were pretreated with 1.0 mol m?3 SeO4 for 24 h, subsequent NO3 uptake from SeO4-free solutions was inhibited about 60%. Sulphate partially alleviated the inhibitory effect of SeO3 when supplied together in the ambient solutions, but had no effect in seedlings pretreated with SeO3. By contrast, SO4 partially alleviated the inhibitory effect of SeO4 even in seedlings pretreated with SeO4. Since uptake of NO3 by intact seedlings was also inhibited by SeO3, the percentage of the absorbed NO3 that was reduced was not affected. By contrast, SeO4, which affected NO3 uptake much less, inhibited the percentage reduced of that absorbed. However, when supplied to detached leaves, both SeO3 and SeO4 inhibited the in vivo reduction of NO3 as well as the induction of nitrate reductase and nitrite reductase activities. Selenite was more inhibitory than SeO4; approximately a five to 10 times higher concentration of SeO4 than SeO3 was required to achieve similar inhibition. In detached leaves, the inhibitory effect of both SeO3 and SeO4 on in vivo NO3 reduction as well as on the induction of nitrate reductase activity was partially alleviated by SO4. The inhibitory effects of Se salts on the induction of nitrite reductase were, however, completely alleviated by SO4. The results show that in barley seedlings SeO3 is more toxic than SeO4. The reduction of SeO4 to SeO3 may be a rate limiting step in causing Se toxicity.  相似文献   

13.
Trientine(R) is not an effective drug for the treatment of intractable hand dermatitis in nickel-sensitive patients. In a controlled, double-blind study this chelator, on oral administration, failed to stimulate nickel excretion. Early morning urine samples from two groups of nine patients were analyzed by atomic absorption spectrophotometry in a stabilized Temperature Platform Furnace equipped with Zeeman background correction. Group 1 patients received placebo for 6 wk, then a 4-wk rest before crossover. Group 2 received the drug in the first period. No difference in Ni levels between the placebo period and the drug period in either group was demonstrated, nor was there any significant improvement in the hand eczema. Copper was measured in the same urine samples using the same instrumentation, but with atomization off the wall. There was a considerable increase in copper excretion during the drug treatment period. Group 1 excreted a mean 538±378 (SD) μg/L, which represented a mean increase of 787±653 % (SD). Group 2 excreted a mean 960±410 (SD) μg/L; a mean difference of 630±398 % (SD). It was concluded that the use of Trientine(R) in subjects of normal copper status should be carefully controlled and monitored.  相似文献   

14.
A Gram-negative bacterium, identified as Stenotrophomonas maltophilia by fatty acid analysis and 16S rRNA sequencing, was isolated from a seleniferous agricultural evaporation pond sediment collected in the Tulare Lake Drainage District, California. In cultures exposed to the atmosphere, the organism reduces selenate (SeO4(2-)) and selenite (SeO3(2-)) to red amorphous elemental selenium (Se degrees ) only upon reaching stationary phase, when O2 levels are less than 0.1 mg l(-1). In 48 h, S. maltophilia removed 81.2% and 99.8% of added SeO4(2-) and SeO3(2-) (initial concentration of 0.5 mM), respectively, from solution. Anaerobic growth experiments revealed that the organism was incapable of using SeO4(2-), SeO3(2-), SO4(2-) or NO3- as a terminal electron acceptor. Transmission electron microscopy of cultures spiked with either Se oxyanion were found to contain spherical extracellular deposits. Analysis of the deposits by energy-dispersive X-ray spectroscopy revealed that they consist of Se. Furthermore, S. maltophilia was active in producing volatile alkylselenides when in the presence of SeO4(2-) and SeO3(2-). The volatile products were positively identified as dimethyl selenide (DMSe), dimethyl selenenyl sulphide (DMSeS) and dimethyl diselenide (DMDSe) by gas chromatography-mass spectrometry. Our findings suggest that this bacterium may contribute to the biogeochemical cycling of Se in seleniferous evaporation pond sediments and waters. This organism may also be potentially useful in a bioremediation scheme designed to treat seleniferous agricultural wastewater.  相似文献   

15.
High levels of selenium can cause adverse effects in plants as well as animals. In a greenhouse experiment, rapeseed (Brassica napus) was grown in an alkaline sandy loam soil treated with different levels of selenate-Se and selenite-Se ranging from 0 to 4 mg kg?1. Total dry matter yield of selenium-treated rapeseed plants decreased significantly as compared to control plants. Plants were stressed at a very early stage of vegetative growth and produced fewer rosettes and flowers. Plant height and leaf production were negatively affected by selenate-Se. Dry matter of leaves was significantly higher in selenite- than in selenate-treated plants. Selenate-treated plants accumulated 75–160 times more Se in shoots and 2–18 times more in roots as compared to selenite-treated plants at the rosette formation stage, with this difference narrowing at peak flowering stage. Rapeseed leaves were subjected to biochemical analysis at rosette and peak flowering stages. Accumulation of selenium in leaves resulted in a significant increase in lipid peroxidation, chlorophyll, vitamin C and free amino acids, and a decrease in phenols, total soluble sugars and starch concentration.  相似文献   

16.
17.
The origin of platelet-activating factor (PAF) in the urine remains ill defined. The present study documents that [3H]PAF (3.5 mu Ci) injected into the renal artery of isolated control rat kidney preparations perfused at constant pressure with a cell-free medium containing 1% bovine serum albumin (BSA) was excreted in negligible amounts (0.034%) in the urine, whereas 6% was retained by the kidney. When kidneys were perfused with a BSA-free medium, 0.029 and 71% of the total radioactivity added to the perfusate was recovered in the urine and in the renal tissue, respectively. [3H]PAF urine excretion in proteinuric kidneys from adriamycin-treated rats was still negligible (0.015%). Analysis of the renal tissue-retained radioactivity in control and proteinuric kidneys perfused with 1% BSA indicated metabolism into long chain acyl-sn-glycero-3-phosphorylcholine species, lyso-PAF, glycerols, and intact PAF. Thin layer chromatography analysis of [3H]glycerol fraction in these renal extracts showed two major components comigrating with 1-O-alkylglycerol and 1-O-alkyl-2-fatty acylglycerol. Isolated proximal tubules, but not glomeruli from nephrotic rats exposed to increasing concentrations of BSA (0-4%), had a higher PAF uptake than control tubules for BSA concentrations ranging from 0 to 0.1%. Our findings in the isolated perfused kidneys indicate that, in normal conditions, circulating PAF is excreted in the urine in negligible amounts and that the altered glomerular permeability to proteins does not affect this excretion rate. Moreover, analysis of renal tissue radioactivity documented that the renal metabolism of PAF is comparable in control and nephrotic kidneys.  相似文献   

18.
Abstract

Selenate and selenite are the most prevalent bioavailable selenium (Se) forms and most easily taken up by plants. Some studies indicate that they are differently absorbed and accumulated in plants and that selenium is toxic if accumulated at high concentrations. Toxicity is due to substitution of sulphur by selenium in cysteine and methionine aminoacids with alteration of the tertiary structure and catalytic activity of proteins and with inhibition of enzymes involved in chlorophyll biosynthesis. Moreover, the interaction between Se and thiol groups induces loss of efficiency of plant defence systems and increases the reactive oxygen species (ROS) production thus enhancing the oxidative stress. To further elucidate the role of Se in higher plants, in this study the antioxidative response to the phytotoxicity of selenite and selenate in Senecio scandens L. was evaluated. The data indicate that while selenite induces oxidative stress enhancing ROS production, lipid peroxidation and the oxidised forms of ascorbate and glutathione, selenate does not significantly affect the analysed pathways. This article outlines that the synergistic action of different antioxidant components is necessary to overcome the phytotoxicity of selenium in Senecio.  相似文献   

19.
The uptake of selenite, selenate and selenomethionine (SeMet) was performed with brush border membrane vesicles (BBMV) prepared from rats fed selenium-deficient and supplemented diets. At equilibrium (60 min), the uptake of 75Se from [75Se]selenite ranged from 16.5 to 18.9 nmol mg-1 protein. There was a curvilinear relationship in the uptake of selenite over a concentration range of 10–1000 m. About 2 nmol mg-1 protein was obtained with selenomethionine (SeMet) which occurred between 90 and 180 s. In contrast to selenite, there was a linear relationship in the initial uptake of SeMet over a concentration range of 10–1000 m. The uptake of selenate was approximately 50-fold lower than selenite, reaching 350 pmol mg-1 protein. Dietary selenium level had no effect on the rate of 75Se accumulation by BBMV. Dramatic differences are found in the uptake and binding of selenium by BBMV incubated with different selenocompounds.  相似文献   

20.
Radiolabeled N-(2-aminoethyl)-glycine (AEG) was synthesized and various aspects of its bioavailability were evaluated. AEG was rapidly and completely taken up by the small intestine of the rat. It was quickly absorbed into the portal vein. Most of the absorption took place during the first hour, with a peak at 30 min. Entry of this compound into the intestinal mucosal cell may be by a mechanism not involving active transport. Of many organs examined, only the liver took up significant amounts of AEG. The latter neither crossed the brain barrier nor was metabolized. Total urinary excretion (as intact AEG) averaged 80% of the administered dose within 4 hours and nearly 100% by 10 hours. Excluding the neutral-acidic amino acids and ammonia, AEG represented >99% of the ninhydrin positivity in the urine. AEG is thus an example of a substance which is rapidly and totally absorbed, as well as quickly and completely excreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号