首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animals detect environmental changes through sensory neural mechanisms that enable them to differentiate the quality, intensity and temporal characteristics of stimuli. The 'doctrine of specific nervous energies' postulates that the different sensory modalities experienced by humans result of the activation of specific nervous pathways. Identification of functional classes of sensory receptors provided scientific support to the concept that somatosensory modalities (touch, pain, temperature, kinesthesis) are subserved by separate populations of sensory receptor neurons specialized in detecting innocuous and injurious stimuli of different quality (mechanical forces, temperature, chemical compounds). The identification of receptor proteins activated by different physicochemical stimuli, in particular ion channels of the Transient Receptor Potential (TRP) superfamily, has put forward the concept that specificity of peripheral sensory receptor neurons is determined by their expression of a particular "molecular sensor" that confers to each functional type its selectivity to respond with a discharge of nerve impulses to stimuli of a given quality. Nonetheless, recent experimental data suggest that the various molecular sensors proposed as specific transducer molecules for stimuli of different quality are not as neatly associated with the distinct functional types of sensory receptors as originally proposed. First, many ion channel molecules initially associated to the transduction of only one particular form of energy are also activated by stimuli of different quality, implying a limited degree of specificity in their transducing capacities. Second, molecular sensors associated with a stimulus quality and hence to a sensory receptor type and ultimately to a sensory modality may be concomitantly expressed in sensory receptor neurons functionally defined as specific for another stimulus quality. Finally, activation of voltage gated channels involved primarily in nerve impulse generation can also influence the gating of transducing channels, dramatically modifying their activation profile. Thus, we propose that the capacity exhibited by the different functional types of somatosensory receptor neurons to preferentially detect and encode specific stimuli into a discharge of nerve impulses, appears to result of a characteristic combinatorial expression of different ion channels in each neuronal type that finally determines their transduction and impulse firing properties. Transduction channels don't operate in isolation and their cellular context should also be taken into consideration to fully understand their function. Moreover, the inhomogeneous distribution of transduction and voltage-gated channels at soma, axonal branches and peripheral endings of primary sensory neurons influences the characteristics of the propagated impulse discharge that encodes the properties of the stimulus. Alteration of this concerted operation of ion channels in pathological conditions may underlie the changes in excitability accompanying peripheral sensory neuron injuries.  相似文献   

2.
Transient receptor potential (TRP) proteins are a family of ion channels central for sensory signaling. These receptors and, in particular, those involved in thermal sensing are also involved in pain signaling. Noteworthy, thermosensory receptors are polymodal ion channels that respond to both physical and chemical stimuli, thus integrating different environmental clues. In addition, their activity is modulated by algesic agents and lipidergic substances that are primarily released in pathological states. Lipids and lipid-like molecules have been found that can directly activate some thermosensory channels or modulate their activity by either potentiating or inhibiting it. To date, more than 50 endogenous lipids that can regulate TRP channel activity in sensory neurons have been described, thus representing the majority of known endogenous TRP channel modulators. Lipid modulators of TRP channels comprise lipids from a variety of metabolic pathways, including metabolites of the cyclooxygenase, lipoxygenase and cytochrome-P450 pathways, phospholipids and lysophospholipids. Therefore, TRP-channels are able to integrate and interpret incoming signals from the different metabolic lipid pathways. Taken together, the large number of lipids that can activate, sensitize or inhibit neuronal TRP-channels highlights the pivotal role of these molecules in sensory biology as well as in pain transduction and perception. This article is part of a Special Issue entitled: Lipid–protein interactions. Guest Editors: Amitabha Chattopadhyay and Jean-Marie Ruysschaert.  相似文献   

3.
The gating of ion channels by mechanical force underlies the sense of touch and pain. The mode of gating of mechanosensitive ion channels in vertebrate touch receptors is unknown. Here we show that the presence of a protein link is necessary for the gating of mechanosensitive currents in all low‐threshold mechanoreceptors and some nociceptors of the dorsal root ganglia (DRG). Using TEM, we demonstrate that a protein filament with of length ~100 nm is synthesized by sensory neurons and may link mechanosensitive ion channels in sensory neurons to the extracellular matrix. Brief treatment of sensory neurons with non‐specific and site‐specific endopeptidases destroys the protein tether and abolishes mechanosensitive currents in sensory neurons without affecting electrical excitability. Protease‐sensitive tethers are also required for touch‐receptor function in vivo. Thus, unlike the majority of nociceptors, cutaneous mechanoreceptors require a distinct protein tether to transduce mechanical stimuli.  相似文献   

4.
The C. elegans polymodal ASH sensory neurons detect mechanical, osmotic, and chemical stimuli and release glutamate to signal avoidance responses. To investigate the mechanisms of this polymodal signaling, we have characterized the role of postsynaptic glutamate receptors in mediating the response to these distinct stimuli. By studying the behavioral and electrophysiological properties of worms defective for non-NMDA (GLR-1 and GLR-2) and NMDA (NMR-1) receptor subunits, we show that while the osmotic avoidance response requires both NMDA and non-NMDA receptors, the response to mechanical stimuli only requires non-NMDA receptors. Furthermore, analysis of the EGL-3 proprotein convertase provides additional evidence that polymodal signaling in C. elegans occurs via the differential activation of postsynaptic glutamate receptor subtypes.  相似文献   

5.
Cation channels in the DEG/ENaC family are proposed to detect cutaneous stimuli in mammals. We localized one such channel, DRASIC, in several different specialized sensory nerve endings of skin, suggesting it might participate in mechanosensation and/or acid-evoked nociception. Disrupting the mouse DRASIC gene altered sensory transduction in specific and distinct ways. Loss of DRASIC increased the sensitivity of mechanoreceptors detecting light touch, but it reduced the sensitivity of a mechanoreceptor responding to noxious pinch and decreased the response of acid- and noxious heat-sensitive nociceptors. The data suggest that DRASIC subunits participate in heteromultimeric channel complexes in sensory neurons. Moreover, in different cellular contexts, DRASIC may respond to mechanical stimuli or to low pH to mediate normal touch and pain sensation.  相似文献   

6.
趋化因子受体最早是在研究白细胞迁移过程中发现的,它在大鼠和小鼠的背根神经节外周感觉神经细胞上也有表达.在炎症情况下,激活的趋化因子受体可以诱导神经细胞上一类重要的镇痛受体—μ-鸦片受体的异源性脱敏,抑制其功能;同时,激活的趋化因子受体还可以增强一类对于痛觉感受非常关键的受体——辣椒素受体的敏感性,使其敏化.趋化因子受体诱导的这2种效应可以通过Gi蛋白信号传导通路增强生物体对痛觉的敏感度.这些结果提示,趋化因子受体可能是免疫系统和神经系统之间交叉调节的桥梁.  相似文献   

7.
The pharmacology and signaling of bitter, sweet, and umami taste sensing   总被引:1,自引:0,他引:1  
Over the last decade, many of the molecular components that mediate the transduction of taste signaling have been elucidated. The chemosensory receptors for taste have been identified as G protein-coupled receptors (GPCRs) and ion channels that are expressed on the surface of highly specialized taste sensory cells. Tastant molecules act as agonists, binding to and stabilizing active conformations of receptors, resulting in the initiation of signal transduction cascades. Taste signaling, therefore, should be amenable to the methods of pharmacology. This review focuses on the GPCR-mediated signaling of bitter, sweet, and umami tastes and emphasizes the opportunities for pharmacologic evaluation.  相似文献   

8.
In sensory neurons of the peripheral nervous system, receptor potentials can be amplified by depolarizing Cl currents. In mammalian olfactory sensory neurons (OSNs), this anion-based signal amplification results from the sequential activation of two distinct types of transduction channels: cAMP-gated Ca channels and Ca-activated Cl channels. The Cl current increases the initial receptor current about 10-fold and leads to the excitation of the neuron. Here we examine the activation mechanism of the Ca-dependent Cl channel. We focus on calmodulin, which is known to mediate Ca effects on various ion channels. We show that the cell line Odora, which is derived from OSN precursor cells in the rat olfactory epithelium, expresses Ca-activated Cl channels. Single-channel conductance, ion selectivity, voltage dependence, sensitivity to niflumic acid, and Ca sensitivity match between Odora channels and OSN channels. Transfection of Odora cells with CaM mutants reduces the Ca sensitivity of the Cl channels. This result points to the participation of calmodulin in the gating process of Ca-ativated Cl channels, and helps to understand how signal amplification works in the olfactory sensory cilia. Calmodulin was previously shown to mediate feedback inhibition of cAMP-synthesis and of the cAMP-gated Ca channels in OSNs. Our results suggest that calmodulin may also be instrumental in the generation of the excitatory Cl current. It appears to play a pivotal role in the peripheral signal processing of olfactory sensory information. Moreover, recent results from other peripheral neurons, as well as from smooth muscle cells, indicate that the calmodulin-controlled, anion-based signal amplification operates in various cell types where it converts Ca signals into membrane depolarization.  相似文献   

9.
Neurons of the Grueneberg ganglion (GG) residing in the vestibule of the murine nose are activated by cool ambient temperatures. Activation of thermosensory neurons is usually mediated by thermosensitive ion channels of the transient receptor potential (TRP) family. However, there is no evidence for the expression of thermo-TRPs in the GG, suggesting that GG neurons utilize distinct mechanisms for their responsiveness to cool temperatures. In search for proteins that render GG neurons responsive to coolness, we have investigated whether TREK/TRAAK channels may play a role; in heterologous expression systems, these potassium channels have been previously found to close upon exposure to coolness, leading to a membrane depolarization. The results of the present study indicate that the thermosensitive potassium channel TREK-1 is expressed in those GG neurons that are responsive to cool temperatures. Studies analyzing TREK-deficient mice revealed that coolness-evoked responses of GG neurons were clearly attenuated in these animals compared with wild-type conspecifics. These data suggest that TREK-1 channels significantly contribute to the responsiveness of GG neurons to cool temperatures, further supporting the concept that TREK channels serve as thermoreceptors in sensory cells. Moreover, the present findings provide the first evidence of how thermosensory GG neurons are activated by given temperature stimuli in the absence of thermo-TRPs.  相似文献   

10.
Cold sensation is initiated in the periphery by a specialized population of cold-sensitive neurons, referred to as cold receptors, who transmit decreases in temperature with sub-degree resolution using a diverse assortment of ion channels and receptors. It is largely accepted that normal cold signaling is initiated through activation of transient receptor potential melastatin 8 (TRPM8) expressing neurons. Conversely, the mechanisms underlying cold-induced pain signaling are not as well defined. Interestingly, mounting evidence demonstrates functional interplay between cold signaling and other somatic sensations, such as itch and warmth; thus, cold-sensing pathways also engage in sensory crosstalk and population coding mechanisms. In this review, we will discuss recent advances in our understanding of cold sensation and address major gaps in knowledge that require more investigation.  相似文献   

11.
The 7-transmembrane or G protein-coupled receptors relay signals from hormones and sensory stimuli to multiple signaling systems at the intracellular face of the plasma membrane including heterotrimeric G proteins, ERK1/2, and arrestins. It is an emerging concept that 7-transmembrane receptors form oligomers; however, it is not well understood which roles oligomerization plays in receptor activation of different signaling systems. To begin to address this question, we used the angiotensin II type 1 (AT(1)) receptor, a key regulator of blood pressure and fluid homeostasis that in specific context has been described to activate ERKs without activating G proteins. By using bioluminescence resonance energy transfer, we demonstrate that AT(1) receptors exist as oligomers in transfected COS-7 cells. AT(1) oligomerization was both constitutive and receptor-specific as neither agonist, antagonist, nor co-expression with three other receptors affected the bioluminescence resonance energy transfer 2 signal. Furthermore, the oligomerization occurs early in biosynthesis before surface expression, because we could control AT(1) receptor export from the endoplasmic reticulum or Golgi by using regulated secretion/aggregation technology (RPD trade mark ). Co-expression studies of wild type AT(1) and AT(1) receptor mutants, defective in either ligand binding or G protein and ERK activation, yielded an interesting result. The mutant receptors specifically exerted a dominant negative effect on Galpha(q) activation, whereas ERK activation was preserved. These data suggest that distinctly active conformations of AT(1) oligomers can couple to each of these signaling systems and imply that oligomerization plays an active role in supporting these distinctly active conformations of AT(1) receptors.  相似文献   

12.
Extracellular nucleotides, released in response to mechanical or inflammatory stimuli, signal through P2 receptors in many cell types, including osteoblasts. P2X7 receptors are ATP-gated cation channels that can induce formation of large membrane pores. Disruption of the gene encoding the P2X7 receptor leads to decreased periosteal bone formation and insensitivity of the skeleton to mechanical stimulation. Our purpose was to investigate signaling pathways coupled to P2X7 activation in osteoblasts. Live cell imaging showed that ATP or 2 ',3 '-O-(4-benzoylbenzoyl)-ATP (BzATP), but not UTP, UDP, or 2-methylthio-ADP, induced dynamic membrane blebbing in calvarial osteoblasts. Blebbing was observed in calvarial cells from wildtype but not P2X7 knock-out mice. P2X7 receptors coupled to activation of phospholipase D and A2, inhibition of which suppressed BzATP-induced blebbing. Activation of these phospholipases leads to production of lysophosphatidic acid (LPA). LPA caused dynamic blebbing in osteoblasts from both wild-type and P2X7 knock-out mice, similar to that induced by BzATP in wildtype cells. However, LPA-induced blebbing was more rapid in onset and was not affected by inhibition of phospholipase D or A2. Blockade or desensitization of LPA receptors suppressed blebbing in response to LPA and BzATP, without affecting P2X7-stimulated pore formation. Thus, LPA functions downstream of P2X7 receptors to induce membrane blebbing. Furthermore, inhibition of Rho-associated kinase abolished blebbing induced by both BzATP and LPA. In summary, we propose a novel signaling axis that links P2X7 receptors through phospholipases to production of LPA and activation of Rho-associated kinase. This pathway may contribute to P2X7-stimulated osteogenesis during skeletal development and mechanotransduction.  相似文献   

13.
TRPs in our senses   总被引:1,自引:0,他引:1  
In the last decade, studies of transient receptor potential (TRP) channels, a superfamily of cation-conducting membrane proteins, have significantly extended our knowledge about the molecular basis of sensory perception in animals. Due to their distinct activation mechanisms and biophysical properties, TRP channels are highly suited to function in receptor cells, either as receptors for environmental or endogenous stimuli or as molecular players in signal transduction cascades downstream of metabotropic receptors. As such, TRP channels play a crucial role in many mammalian senses, including touch, taste and smell. Starting with a brief survey of sensory TRP channels in invertebrate model systems, this review covers the current state of research on TRP channel function in the classical mammalian senses and summarizes how modulation of TRP channels can tune our sensations.  相似文献   

14.
The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues—I696 and W697—with Ala markedly affects TRPV1’s response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.  相似文献   

15.
Fas receptor is a member of the tumor necrosis factor-alpha family of death receptors that mediate physiologic apoptotic signaling. To investigate the molecular mechanisms regulating calcium mobilization during Fas-mediated apoptosis, we have analyzed the sequential steps leading to altered calcium homeostasis and cell death in response to activation of the Fas receptor. We show that Fas-mediated apoptosis requires endoplasmic reticulum-mediated calcium release in a mechanism dependent on phospholipase C-gamma1 (PLC-gamma1) activation and Ca2+ release from inositol 1,4,5-trisphosphate receptor (IP3R) channels. The kinetics of Ca2+ release were biphasic, demonstrating a rapid elevation caused by PLC-gamma1 activation and a delayed and sustained increase caused by cytochrome c binding to IP3R. Blocking either phase of Ca2+ mobilization was cytoprotective, highlighting PLC-gamma1 and IP3R as possible therapeutic targets for disorders associated with Fas signaling.  相似文献   

16.
17.
18.
Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is proposed for the DHP-sensitive Ca channel, which pictures the normal pathway of activation of the calcium channel as two voltage-dependent steps in sequence, plus a voltage-independent step which is rate limiting. The model reproduced well the fast and slow gating models of the calcium channel, and the effects of conditioning pulses. It is possible that the voltage-sensitive gating transitions of the DHP receptor, which occur early in the calcium channel activation sequence, could underlie the role of the voltage sensor and yield the rapid excitation-contraction coupling in skeletal muscle, through either electrostatic or allosteric linkage to the ryanodine receptors/calcium release channels.  相似文献   

19.
Prossnitz ER 《Life sciences》2004,75(8):893-899
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling molecules in the human genome. As such, they interact with numerous intracellular molecules, which can act either to propagate or curtail signaling from the receptor. Their primary mode of cellular activation occurs through heterotrimeric G proteins, which in turn can activate a wide spectrum of effector molecules, including phosphodiesterases, phospholipases, adenylyl cyclases and ion channels. Active GPCRs are also the target of G protein-coupled receptor kinases, which phosphorylate the receptors culminating in the binding of the protein arrestin. This results in rapid desensitization through inhibition of G protein binding, as well as novel mechanisms of cellular activation that involve the scaffolding of cellular kinases to GPCR-arrestin complexes. Arrestins can also serve to mediate the internalization of certain GPCRs, a process which plays an important role in regulating cellular activity both by mediating long-term desensitization through down regulation (degradation) of receptors and by recycling desensitized receptors back to the cell surface to initiate additional rounds of signaling. The mechanisms that regulate the subsequent intracellular trafficking of GPCRs following internalization are largely unknown. Recently however, it has become clear that the pattern of receptor phosphorylation and subsequent binding of arrestin play a critical role in the intracellular trafficking of internalized receptors, thereby dictating the ultimate fate of the receptor. In addition, arrestins have now been shown to be required for the recycling of GPCRs that are capable of internalizing through arrestin-independent mechanisms. This review will summarize recent advances in our understanding of the roles of arrestins in post-endocytic GPCR trafficking.  相似文献   

20.
Ligand-gated ion channels (LGICs) mediate rapid chemical neurotransmission. This gene superfamily includes the nicotinic acetylcholine, GABAA/C, 5-hydroxytryptamine type 3, and glycine receptors. A signature disulfide loop (Cys loop) in the extracellular domain is a structural motif common to all LGIC member subunits. Here we report that a highly conserved aspartic acid residue within the Cys loop at position 148 (Asp-148) of the glycine receptor alpha1 subunit is critical in the process of receptor activation. Mutation of this acidic residue to the basic amino acid lysine produces a large decrease in the potency of glycine, produces a decrease in the Hill slope, and converts taurine from a full agonist to a partial agonist; these data are consistent with a molecular defect in the receptor gating mechanism. Additional mutation of Asp-148 shows that alterations in the EC50 for agonists are dependent upon the charge of the side chain at this position and not molecular volume, polarity, or hydropathy. This study implicates negative charge at position Asp-148 as a critical component of the process in which agonist binding is coupled to channel gating. This finding adds to an emerging body of evidence supporting the involvement of the Cys loop in the gating mechanism of the LGICs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号