首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Longitudinal studies employing heterochronic ovarian grafts and long-term ovariectomy indicate that there is no single pacemaker of reproductive aging. Neuroendocrine dysfunction, the declining follicular reserve, and ovarian secretions all contribute to reproductive decline, and their relative importance to the different stages of reproductive aging varies markedly. Moreover, although ovarian secretions during adulthood potentiate certain aspects of the reproductive aging process, their behavior does not fit a simple model of cumulative steroidal damage incurred over the lifespan. Current data are more consistent with temporally distinct windows of steroidal vulnerability for the events affected: cycle lengthening is affected by ovarian secretions during the period of cyclicity, and post-cyclic neuroendocrine failure is potentiated by ovarian secretions during the peri- and post-cyclic period of the lifespan. Recent examination of estradiol receptor dynamics reveals multiple, albeit selective, changes during aging that may contribute to the age-related impairments of tissue sensitivity to estrogen. These changes vary qualitatively and quantitatively among target tissues. Thus, aging of the hypothalamo-pituitary-ovarian axis at the cellular level mirrors, in its multifactorial nature, aging at the organismic level.  相似文献   

2.
The transition to reproductive senescence involves changes in neuroendocrine and ovarian functions, and is accelerated by activation of the aryl hydrocarbon pathway by environmental toxicants such as 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD). In this article, studies which provide evidence as to the possible mechanisms by which the aryl hydrocarbon receptor (AhR) acts in this capacity (i.e. disruption of ovarian, hypothalamic or suprachiasmatic nucleus function, or any combination of these) are reviewed, along with the normal physiological changes that occur during the transition to reproductive senescence in female humans and rodents. Based on findings that the AhR is evolutionarily conserved and necessary for normal fertility, we suggest that the AhR has not only a pathological but also a physiological role in the process of aging. Studies of realistic lifelong AhR activation by dioxins on the hypothalamic-pituitary-ovarian axis and its impact on the transition to reproductive senescence in the aging female are a previously neglected area of research that warrants further consideration.  相似文献   

3.
Stress, behaviour and reproductive performance in female cattle and pigs   总被引:1,自引:0,他引:1  
Female farm animals are exposed to a great variety of environmental and management related stressors. As a consequence, their reproductive and maternal abilities may be compromised through mechanisms acting on the hypothalamic, pituitary, ovarian and uterine function. Responses to short- and long-term stressors may differ as short-term stressors often fail to affect reproduction or even may have stimulatory effects. Thus, the stress response induces diverse neuroendocrine reactions that can either increase or decrease the probability of an animal reproducing depending on the specific situation. The aim of the present review is to summarise the current knowledge on the stress concept and its implications on behaviour and reproductive performance in cows and female pigs as phenomena reported in laboratory animals are unable to explain all effects encountered in domesticated farm animals.  相似文献   

4.
Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.  相似文献   

5.
Evidence describing altered neuroendocrine function during aging from this and other laboratories is reviewed, with focus on changes in the brain-pituitary-ovarian-adrenal-hepatic and in the brain-pituitary-ovarian systems. Difficulties in interpreting the discordant data on age-related changes in pituitary function are discussed. Among mechanisms of reproductive aging are changes at both the ovarian and hypothalamic level (including reduced catecholamine levels, turnover, and synaptosomal uptake). However, it cannot yet be concluded that impairments of hypothalamic catecholamine metabolism are the primary cause for the loss of regular cycles. Evidence for dopaminergic impairments in the basal ganglions of humans and rodents during normal aging suggests that these changes may be a general phenomenon of aging. Although the origins of the changes are not yet known, neuronal cell loss in the substantia nigra would not seem to be the only cause.  相似文献   

6.
Evolutionary theories propose that aging is the result of a trade‐off between self‐maintenance and reproduction, and oxidative stress may play a crucial role in such a trade‐off. Phenotypic manipulations have revealed that a high investment in reproduction leads to a decline in the organism's resistance to oxidative stress, which could in turn accelerate aging. Here, by using quantitative genetic analyses as a tool to disentangle genetic effects from phenotypic variances, the relationship between resistance to oxidative stress at sexual maturity and two key reproductive life‐history traits (i.e., number of breeding events during life and age at last reproduction) was analyzed in cross‐fostered zebra finches. The age of last reproduction had high narrow‐sense heritability, whereas the number of breeding events and oxidative stress resistance showed medium and low heritabilities, respectively. We detected positive genetic correlations between early resistance to oxidative stress and both life‐history traits, suggesting that the efficiency of the antioxidant machinery at maturity may be related to individual reproductive investment throughout lifetime, possibly by influencing the pattern of cellular senescence. Genes encoding for resistance to oxidative stress would have pleiotropic effects on reproductive capacity and aging. Further work is required to confirm this assert.  相似文献   

7.
Nitric oxide (NO) affects reproductive processes both at the level of the brain and reproductive tract and this review is focused on its role as an essential regulator of the hypothalamic control of reproduction. The data gathered indicate that glutamate stimulates noradrenergic neurons which subsequently activate NO-ergic cells via alpha1-adrenergic receptors. The released NO diffuses into luteinizing hormone-releasing hormone (LHRH) terminals where it triggers LHRH secretion by activation of guanylyl cyclase and cyclooxygenase. The NO released by estrogen-stimulated NO-ergic ventromedial neurons plays a crucial role in the regulation of sexual behavior. Furthermore, an increased expression of inducible nitric oxide synthase in the LHRH and oxytocin neurons underlies the destructive action of NO on the aging of the hypothalamic neuroendocrine pathways. Within the hypothalamo-hypophyseal system, NO exerts an inhibitory effect in the control of oxytocin secretion. This action seems to employ an indirect mechanism by which NO may modulate the release of GABA. This review provides an overview of the role of NO in hypothalamic control of LHRH and oxytocin release, aging of the LHRH and oxytocin neurons and sexual behavior.  相似文献   

8.
The reproductive system of human female exhibits a much faster rate of aging than other body systems. Ovarian aging is thought to be dominated by a gradual decreasing numbers of follicles, coinciding with diminished quality of oocytes. Menopause is the final step in the process of ovarian aging. This review focuses on the mechanisms underlying the ovarian aging involving a poor complement of follicles at birth and a high rate of attrition each month, as well as the alternated endocrine factors. We also discuss the possible causative factors that contribute to ovarian aging, e.g., genetic factors, accumulation of irreparable damage of microenvironment, pathological effect and other factors. The appropriate and reliable methods to assess ovarian aging, such as quantification of follicles, endocrine measurement and genetic testing have also been discussed. Increased knowledge of the ovarian aging mechanisms may improve the prevention of premature ovarian failure.  相似文献   

9.
What mechanisms underlie aging? One theory, the wear-and-tear model, attributes aging to progressive deterioration in the molecular and cellular machinery which eventually lead to death through the disruption of physiological homeostasis. The second suggests that life span is genetically programmed, and aging may be derived from intrinsic processes which enforce a non-random, terminal time interval for the survivability of the organism. We are studying an organism that demonstrates both properties: the colonial ascidian, Botryllus schlosseri. Botryllus is a member of the Tunicata, the sister group to the vertebrates, and has a number of life history traits which make it an excellent model for studies on aging. First, Botryllus has a colonial life history, and grows by a process of asexual reproduction during which entire bodies, including all somatic and germline lineages, regenerate every week, resulting in a colony of genetically identical individuals. Second, previous studies of lifespan in genetically distinct Botryllus lineages suggest that a direct, heritable basis underlying mortality exists that is unlinked to reproductive effort and other life history traits. Here we will review recent efforts to take advantage of the unique life history traits of B. schlosseri and develop it into a robust model for aging research.  相似文献   

10.
Parasitic infections may cause alterations in host life history, including changes in reproductive investment (absolute amount of energy allocated to reproduction) and reproductive effort (proportion of available energy allocated to reproduction). Such changes in host life history may reflect: 1) a parasite tactic: the parasite adaptively manipulates energy flow within the host so that the host is induced to make a reduction in reproductive effort and reproductive investment, making more energy available to the parasite; 2) no tactic: there is no change in host reproductive effort and reproductive investment simply decreases as a side effect of the parasite depleting host energy stores; 3) a host tactic: the host adaptively increases reproductive effort in the face of infection and loss of body condition, reproductive investment possibly being reduced despite the increased reproductive effort. Females in Alaskan lake populations of threespine sticklebacks ( Gasterosteus aculeatus ) are capable of clutch production when parasitized by the cestode Schistocephalus solidus despite large relative parasite masses. We analyzed the somatic energy reserves, maturation stage and ovarian mass of female sticklebacks collected from an Alaska lake during a single reproductive season. We found that parasitized females were less likely to carry fully-matured gametes, had smaller ovarian masses, and had lower somatic energy stores than unparasitized females. The relationship between reproductive investment and energy storage did not differ between parasitized and unparasitized females. Thus, reproductive effort did not change in response to parasitic infection. We conclude there was no indication of either a parasite tactic or a host tactic. Simple nutrient theft is involved in the parasite's influence on host reproduction, consistent with an earlier hypothesis that reproductive curtailment in threespine sticklebacks is a side effect.  相似文献   

11.
Reproductive aging and assisted reproduction are becoming progressively more relevant in human medicine. Research with human subjects is limited in many aspects, and consequently animal models may have considerable utility. Such models have provided insight into follicular function, oocyte maturation, and reproductive aging. However, models are often selected based on factors other than physiological or functional similarities. Although the mare has received limited attention as a model for reproduction in women, comparisons between these species indicate that the mare has many attributes of a good model. As the mare ages, cyclic and hormonal changes parallel those of older women. The initial sign of reproductive aging in both species is a shortening of the reproductive cycle with elevated concentrations of FSH. Subsequently, cycles become longer with intermittent ovulations and elevated concentrations of FSH and LH. Reproduction ceases with failure of follicular growth and elevated gonadotropins, apparently because of ovarian failure. In the older woman and mare, oocytes have been maintained in meiotic arrest for decades -- approximately four to five for the woman and two to three for the mare; in both species, reduced oocyte quality is the end factor identified in age-associated infertility. After induction of oocyte maturation in vivo, the timeline to ovulation is the same for the mare and woman, suggesting a comparable sequence of events. The mare's anatomy, long follicular phase and single dominant follicle provide a foundation for studies in oocyte and follicular development. The aim of this review is to evaluate the mare as an animal model to study age-associated changes in reproduction and to improve our understanding of oocyte and follicular maturation in vivo.  相似文献   

12.
Aging and reproductive potential in women.   总被引:1,自引:0,他引:1  
Reproductive potential in women declines with age. Age-related changes in the ovary account for most of this loss of reproductive function. Oocytes, all of which are present at birth, decline in number and quality with age. The endocrine function of the ovary also declines with age, and the ovary becomes unable to sustain its normal function in the neuroendocrine axis. The neuroendocrine axis may be further affected by primary changes occurring in the hypothalamus and pituitary during aging, although this has not been established in humans. Aging also affects the function of the uterus as the endometrium loses its ability to support implantation and growth of an embryo. Diminished uterine function during aging may be due to changes in the uterine vasculature or to changes in the hormone-dependent development of the endometrium. Finally, aging increases a woman's risk of developing medical, gynecologic or obstetric conditions that may impair her fertility. Knowledge of these affects of aging on a woman's reproductive function is essential to advise and treat the growing number of women seeking pregnancy at advanced reproductive age.  相似文献   

13.
Changes in female reproductive function occur relatively early during the life span in many mammalian species. Therefore, this physiological system is an excellent model system in which to study the effects of age on specific endocrine relationships since changes occur prior to the occurrence of multiple pathologies associated with later stages of aging. Data from several laboratories suggest that changes in hypothalamic, pituitary and ovarian function may contribute to age-related deterioration of fertility in females. We will focus our attention on the role of hypothalamic changes in the cascade of events that eventually lead to acyclicity and infertility. Data suggest that changes in the diurnal rhythmicity of catecholaminergic neurotransmitters and their receptors occur during middle age. These changes may regulate the pattern of release of GnRH since alterations in the pulsatile pattern of LH secretion also become detectable at this age. Some age-related changes in hypothalamic and pituitary function are not irreversible or absolutely determined. Instead it appears that the ovarian steroidal milieu modulates the rate of aging of several aspects of hypothalamohypophysial function. In summary, changes in hypothalamic and pituitary function appear to contribute to the aging of the female reproductive system.  相似文献   

14.
《Fly》2013,7(3):253-257
Understanding the causes of aging is a complex problem due to the multiple factors that influence aging, which include genetics, environment, metabolism and reproduction, among others. These multiple factors create logistical difficulties in the evaluation of anti-aging agents. There is a need for good model systems to evaluate potential anti-aging compounds. The model systems used should represent the complexities of aging in humans, so that the findings may be extrapolated to human studies, but they should also present an opportunity to minimize the variables so that the experimental results can be accurately interpreted. In addition to positively affecting lifespan, the impact of the compound on the physiologic confounders of aging, including fecundity and the health span-the period of life where an organism is generally healthy and free from serious or chronic illness-of the model organism needs to be evaluated. Fecundity is considered a major confounder of aging in fruit flies. It is well established that female flies that are exposed to toxic substances typically reduce their dietary intake and their reproductive output and display an artifactual lifespan extension. As a result, drugs that achieve longevity benefits by reducing fecundity as a result of diminished food intake are probably not useful candidates for eventual treatment of aging in humans and should be eliminated during the screening process.  相似文献   

15.
A societal preference of delaying maternal age at first childbirth has increased reliance on assisted reproductive technologies/therapies (ART) to conceive a child. Oocytes that have undergone physiologic aging (≥35 years for humans) are now commonly used for ART, yet evidence is building that suboptimal reproductive environments associated with aging negatively affect oocyte competence and embryo development—although the mechanisms underlying these relationship are not yet well understood. Epigenetic programming of the oocyte occurs during its growth within a follicle, so the ovarian stimulation protocols that administer exogenous hormones, as part of the first step for all ART procedures, may prevent the gamete from establishing an appropriate epigenetic state. Therefore, understanding how oocyte. Therefore, understanding how hormone stimulation and oocyte physiologic age independently and synergistically physiologic age independently and synergistically affect the epigenetic programming of these gametes, and how this may affect their developmental competence, are crucial to improved ART outcomes. Here, we review studies that measured the developmental outcomes affected by superovulation and aging, focusing on how the epigenome (i.e., global and imprinted DNA methylation, histone modifications, and epigenetic modifiers) of gametes and embryos acquired from females undergoing physiologic aging and exogenous ovarian stimulation is affected.  相似文献   

16.
Allocation of resources to competing processes of growth, maintenance, or reproduction is arguably a key process driving the physiology of life history trade‐offs and has been shown to affect immune defenses, the evolution of aging, and the evolutionary ecology of offspring quality. Here, we develop a framework to investigate the evolutionary consequences of physiological dynamics by developing theory linking reproductive cell dynamics and components of fitness associated with costly resource allocation decisions to broader life history consequences. We scale these reproductive cell allocation decisions to population‐level survival and fecundity using a life history approach and explore the effects of investment in reproduction or tissue‐specific repair (somatic or reproductive) on the force of selection, reproductive effort, and resource allocation decisions. At the cellular level, we show that investment in protecting reproductive cells increases fitness when reproductive cell maturation rate is high or reproductive cell death is high. At the population level, life history fitness measures show that cellular protection increases reproductive value by differential investment in somatic or reproductive cells and the optimal allocation of resources to reproduction is moulded by this level of investment. Our model provides a framework to understand the evolutionary consequences of physiological processes underlying trade‐offs and highlights the insights to be gained from considering fitness at multiple levels, from cell dynamics through to population growth.  相似文献   

17.
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α‐ketoglutarate (α‐KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α‐KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α‐KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α‐KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down‐regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α‐KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.  相似文献   

18.
Aging is a developmental process occurring in all living organisms after reaching a critical developmental stage, characterized by progressive loss of functions until death. Different cells/tissues age differently depending on epigenetics and cell-cell interactions. While males maintain fertility for the most part of their life females only maintain reproductive ability for a short time compared with their lifespan. The interesting question is why and how the females lose fertility so quickly. There have been many hypotheses proposed from different perspectives and recent research has revealed unusual interactions between germ cells and somatic cells which may determine the lifespan of reproduction in the females. This review briefly discusses recent progress in reproductive aging in the well studied model, C. elegans, and focuses on the molecular mechanisms which may be conserved across all animals including humans.  相似文献   

19.
哺乳动物的昼夜节律是基因编码的分子钟在体内产生的一种以大约24 h为周期的生理现象,使机体的生理过程与外界环境的变化相协调,是对环境适应的一种表现.在哺乳动物中,繁殖生理功能受生物钟系统的调节.在下丘脑-垂体-卵巢(hypothalamic-pituitary-ovarian,HPO)轴的各组织中均已观察到生物钟基因的...  相似文献   

20.
Cognitive changes that occur during mid-life and beyond are linked to both aging and the menopause transition. Studies in women suggest that the age at menopause onset can impact cognitive status later in life; yet, little is known about memory changes that occur during the transitional period to the postmenopausal state. The 4-vinylcyclohexene diepoxide (VCD) model simulates transitional menopause in rodents by depleting the immature ovarian follicle reserve and allowing animals to retain their follicle-deplete ovarian tissue, resulting in a profile similar to the majority of perimenopausal women. Here, Vehicle or VCD treatment was administered to ovary-intact adult and middle-aged Fischer-344 rats to assess the trajectory of cognitive change across time with normal aging and aging with transitional menopause via VCD-induced follicular depletion, as well as to evaluate whether age at the onset of follicular depletion plays a role in cognitive outcomes. Animals experiencing the onset of menopause at a younger age exhibited impaired spatial memory early in the transition to a follicle-deplete state. Additionally, at the mid- and post- follicular depletion time points, VCD-induced follicular depletion amplified an age effect on memory. Overall, these findings suggest that age at the onset of menopause is a critical parameter to consider when evaluating learning and memory across the transition to reproductive senescence. From a translational perspective, this study illustrates how age at menopause onset might impact cognition in menopausal women, and provides insight into time points to explore for the window of opportunity for hormone therapy during the menopause transition period. Hormone therapy during this critical juncture might be especially efficacious at attenuating age- and menopause- related cognitive decline, producing healthy brain aging profiles in women who retain their ovaries throughout their lifespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号