首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stem cell therapy offers tremendous promise in the treatment of many incurable diseases. A variety of stem cell types are being studied but human embryonic stem cells (hESCs) appear to be the most versatile as they are pluripotent and can theoretically differentiate into all the tissues of the human body via the three primordial germ layers and the male and female germ lines. Currently, hESCs have been successfully converted in vitro into functional insulin secreting islets, cardiomyocytes, and neuronal cells and transfer of such cells into diabetic, ischaemic, and parkinsonian animal models respectively have shown successful engraftment. However, hESC-derived tissue application in the human is fraught with the problems of ethics, immunorejection, tumorigenesis from rogue undifferentiated hESCs, and inadequate cell numbers because of long population doubling times in hESCs. Human mesenchymal stem cells (hMSC) though not tumorigenic, also have their limitations of multipotency, immunorejection, and are currently confined to autologous transplantation with the genuine benefits in allogeneic settings not conclusively shown in large controlled human trials. Human Wharton's jelly stem cells (WJSC) from the umbilical cord matrix which are of epiblast origin and containing both hESC and hMSC markers appear to be less troublesome in not being an ethically controversial source, widely multipotent, not tumorigenic, maintain "stemness" for several serial passages and because of short population doubling time can be scaled up in large numbers. This report describes in detail the hurdles all these stem cell types have to overcome before stem cell-based therapy becomes a genuine reality.  相似文献   

3.
4.
Ginsburg D 《Cell》2011,147(1):17-19
Advances in genomic technology have produced an explosion of new information about the genetic basis for human disease, fueling extraordinarily high expectations for improved treatments. This perspective will take brief stock of what genetics/genomics have brought to clinical practice to date and what we might expect for the future.  相似文献   

5.
Cohen JP 《New biotechnology》2012,29(6):751-756
The number of personalized medicines and companion diagnostics in use in the United States has gradually increased over the past decade, from a handful of medicines and tests in 2001 to several dozen in 2011. However, the numbers have not reached the potential hoped for when the human genome project was completed in 2001. Significant clinical, regulatory, and economic barriers exist and persist. From a regulatory perspective, therapeutics and companion diagnostics are ideally developed simultaneously, with the clinical significance of the diagnostic established using data from the clinical development program of the corresponding therapeutic. Nevertheless, this is not (yet) happening. Most personalized medicines are personalized post hoc, that is, a companion diagnostic is developed separately and approved after the therapeutic. This is due in part to a separate and more complex regulatory process for diagnostics coupled with a lack of clear regulatory guidance. More importantly, payers have placed restrictions on reimbursement of personalized medicines and their companion diagnostics, given the lack of evidence on the clinical utility of many tests. To achieve increased clinical adoption of diagnostics and targeted therapies through more favorable reimbursement and incorporation in clinical practice guidelines, regulators will need to provide unambiguous guidance and manufacturers will need to bring more and better clinical evidence to the market place.  相似文献   

6.
7.
Premature termination codons (PTCs) are equivalent to nonsense sequences. They encode no amino acid, and their presence precludes the synthesis of full-length proteins. Furthermore, the resulting truncated proteins, if synthesized and stable, are likely to be non-functional or might even be deleterious to cellular metabolism. Approximately one third of genetic and acquired diseases are due to PTCs. In fact, PTCs are apt to cause at least some cases of all diseases that involve protein insufficiency. Cells have evolved a way to eliminate mRNAs that contain PTCs using a mechanism called nonsense-mediated mRNA decay (NMD). Here, we will review how to determine which PTCs elicit NMD, what is currently known about the mechanism of NMD, and additional information that is pertinent to establishing therapies for PTC-associated diseases.  相似文献   

8.
Pharmacogenomics is the study of the myriad interactions between genes and pharmacotherapy. Developments in pharmacogenomics have changed and will affect pharmaceutical research, drug development and the practice of medicine in a significant way. In this article, we make an inventory of the ethical implications that might arise as a result of possible developments in pharmacogenomics and investigate whether the present ethical framework will be able to adequately answer arising questions. We think that many of the questions related to the consequences of pharmacogenomics are answerable along the lines of present ethical thinking. We also believe, however, that many 'changes of degree' may result in a 'change of kind.' We therefore think that pharmacogenomics may potentially have such a profound influence on scientific research and the pharmaceutical industry, the practice of medicine and society at large, that this will generate its own unique dynamic, which will require new ethical research. We suggest that the notion of 'responsibility' will be a major focus of such research.  相似文献   

9.
The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products.  相似文献   

10.
The ability of dendritic cells (DCs) to orchestrate innate and adaptive immune responses has been exploited to develop potent anti-cancer immunotherapies. Recent clinical trials exploring the efficacy of ex vivo modified autologous DC-based vaccines have reported some promising results. However, in vitro generation of autologous DCs for clinical administration, their loading with tumor associated antigens (TAAs) and their activation, is laborious and expensive, and, as a result of inter-individual variability in the personalized vaccines, remains poorly standardized. An attractive alternative approach is to load resident DCs in vivo by targeted delivery of TAAs, using viral vectors and activating them simultaneously. To this end, we have constructed genetically-modified adenoviral (Ad) vectors and bispecific adaptor molecules to retarget Ad vectors encoding TAAs to the CD40 receptor on DCs. Pre-clinical human and murine studies conducted so far have clearly demonstrated the suitability of a 'two-component' (i.e. Ad and adaptor molecule) configuration for targeted modification of DCs in vivo for cancer immunotherapy. This review summarizes recent progress in the development of CD40-targeted Ad-based cancer vaccines and highlights pre-clinical issues in the clinical translation of this approach.  相似文献   

11.
12.
Recent results confirm that long‐term expression of therapeutic transgenes can be achieved by using a transposon‐based system in primary stem cells and in vivo. Transposable elements are natural DNA transfer vehicles that are capable of efficient genomic insertion. The latest generation, Sleeping Beauty transposon‐based hyperactive vector (SB100X), is able to address the basic problem of non‐viral approaches – that is, low efficiency of stable gene transfer. The combination of transposon‐based non‐viral gene transfer with the latest improvements of non‐viral delivery techniques could provide a long‐term therapeutic effect without compromising biosafety. The new challenges of pre‐clinical research will focus on further refinement of the technology in large animal models and improving the safety profile of SB vectors by target‐selected transgene integration into genomic “safe harbors.” The first clinical application of the SB system will help to validate the safety of this approach.  相似文献   

13.
Aboody K  Capela A  Niazi N  Stern JH  Temple S 《Neuron》2011,70(4):597-613
Since their discovery twenty years ago and prospective isolation a decade later, neural stem cells (NSCs), their progenitors, and differentiated cell derivatives along with other stem-cell based strategies have advanced steadily toward clinical trials, spurred by the immense need to find reparative therapeutics for central nervous system (CNS) diseases and injury. Current phase I/II trials using stem cells in the CNS are the vanguard for the widely anticipated next generation of regenerative therapies and as such are pioneering the stem cell therapy process. While translation has typically been the purview of industry, academic researchers are increasingly driven to bring their findings toward treatments and face challenges in knowledge gap and resource access that are accentuated by the unique financial, manufacturing, scientific, and regulatory aspects of cell therapy. Solutions are envisioned that both address the significant unmet medical need and lead to increased funding for basic and translational research.  相似文献   

14.
15.
16.
全球交通基础设施网络的不断扩张导致的栖息地丧失和破碎化已成为生物多样性下降的主要影响因素之一。国外开展了大量的道路对野生动物生存影响的研究, 相对而言, 我国在该领域的研究刚刚起步。本文通过总结截止于2021年国内的144篇案例研究文献以及新浪微博中210条道路交通伤害信息, 将我国道路对野生动物的影响分为栖息地丧失、栖息地破碎化、回避或聚集路边、阻碍或促进迁移、种群隔离、野生动物通道和道路交通伤害等方面, 从研究方法、研究地点、研究物种和研究结果等不同角度进行梳理和总结。近年来, 我国的相关研究呈现不断增长的趋势, 研究地点主要集中在可可西里、长白山和秦岭地区; 研究物种主要为青藏高原有蹄类、大熊猫(Ailuropoda melanoleuca)和亚洲象(Elephas maximus)。未来重点发展方向应包括: (1)道路野生动物基础数据采集平台建设; (2)我国不同动物地理分区的道路野生动物相关研究; (3)深入开展学科交叉与部门合作以及国际交流合作。公众在社交媒体发布的相关信息表明近年来公众对道路交通伤害问题越来越关注, 未来开展基于公民科学收集道路交通伤害数据具有迫切性和可行性。  相似文献   

17.
PACAP: the road to discovery   总被引:1,自引:0,他引:1  
Arimura A 《Peptides》2007,28(9):1617-1619
  相似文献   

18.
19.
20.
To assess the attitudes of the Japanese general public towards pharmacogenomics research and a DNA bank for identifying genomic markers associated with ADRs and their willingness to donate DNA samples, we conducted a national survey for 1,103 Japanese adults from the general public, not a patient population. The response rate was 36.8%. The majority of the respondents showed a positive attitude towards pharmacogenomics research (81.0%) and a DNA bank (70.4%). Considering fictitious clinical situations such as taking medications and experiencing ADRs, the willingness to donate DNA samples when experiencing ADRs (61.7%) was higher than when taking medications (45.3%). Older generations were significantly associated with a decreased willingness to donate (OR = 0.45, CI 0.28–0.72 in 50s. OR = 0.49, CI: 0.31–0.77 in 60s). Positive attitudes towards pharmacogenomics research, a DNA bank, blood/bone marrow/organ donation were significantly associated with an increased willingness. However, the respondents had the following concerns regarding a DNA bank: the confidentiality of their personal information, the manner by which research results were utilized and simply the use of their own DNA for research. In order to attain public understanding to overcome these concerns, a process of public awareness should be put into place to emphasize the beneficial aspects of identifying genomic markers associated with ADRs and to address these concerns raised in our study. Further study is needed to assess the willingness of actual patients taking medications in real situations, since the respondents in our study were from the general public, not a patient population, and their willingness was assessed on the condition of assuming that they were patients taking medications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号