首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproduction is an event that requires the coordination of peripheral organs with the nervous system to ensure that the internal and external environments are optimal for successful procreation of the species. This is accomplished by the hypothalamic-pituitary-gonadal axis that coordinates reproductive behavior with ovulation. The primary signal from the central nervous system is gonadotropin-releasing hormone (GnRH), which modulates the activity of anterior pituitary gonadotropes regulating follicle stimulating hormone (FSH) and luteinizing hormone (LH) release. As ovarian follicles develop they release estradiol, which negatively regulates further release of GnRH and FSH. As estradiol concentrations peak they trigger the surge release of GnRH, which leads to LH release inducing ovulation. Release of GnRH within the central nervous system helps modulate reproductive behaviors providing a node at which control of reproduction is regulated. To address these issues, this review focuses on several critical questions. How is the HPG axis regulated in species with different reproductive strategies? What internal and external conditions modulate the synthesis and release of GnRH? How does GnRH modulate reproductive behavior within the hypothalamus? How does disease shift the activity of the HPG axis?  相似文献   

2.
The current dogma is that the differential regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) synthesis and secretion is modulated by gonadotropin-releasing hormone (GnRH) pulse frequency and by changes in inhibins, activins, and follistatins both at the pituitary and at the peripheral level. To date no studies have looked at the overlapping function of these regulators in a combined setting. We tested the hypothesis that changes in GnRH pulse frequency alter the relative abundance of these regulators at the pituitary and peripheral levels in a manner consistent with changes in pituitary and circulating concentrations of FSH; that is, an increase in FSH will be accompanied by increased stimulatory input (activin) and/or reduced follistatin and inhibin. Ovariectomized ewes were subjected to a combination hypothalamic pituitary disconnection (HPD)-hypophyseal portal blood collection procedure. Hypophyseal portal and jugular blood samples were collected for a 6-h period from non-HPD ewes, HPD ewes, or HPD ewes administered GnRH hourly or every 3 h for 4 days. In the absence of endogenous hypothalamic and ovarian hormones that regulate gonadotropin secretion, 3-hourly pulses of GnRH increased pituitary content of FSH more than hourly GnRH, although these differences were not evident in the peripheral circulation. The results failed to support the hypothesis in that the preferential increase of pituitary content of FSH by the lower GnRH pulse frequency could be explained by changes in the pituitary content of inhibin A, follistatin, or activin B. Perhaps the effects of GnRH pulse frequency on FSH is due to changes in the balance of free versus bound amounts of these FSH regulatory proteins or to the involvement of other regulators not monitored in this study.  相似文献   

3.
Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH) is under the control of hypothalamic gonadotrophin releasing hormone (GnRH), while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary), as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1Cre/+; ARfl/y) which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1Cre/+; ARfl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males.  相似文献   

4.
This minireview considers the state of knowledge regarding the interactions of testicular hormones to regulate the secretion and actions of GnRH in males, with special focus on research conducted in rams and male rhesus monkeys. In these two species, LH secretion is under the negative feedback regulation of testicular steroids that act predominantly within the central nervous system to suppress GnRH secretion. The extent to which these actions of testicular steroids result from the direct actions of testosterone or its primary metabolites, estradiol or dihydrotestosterone, is unclear. Because GnRH neurons do not contain steroid receptors, the testicular steroids must influence GnRH neurons via afferent neurons, which are largely undefined. The feedback regulation of FSH is controlled by inhibin acting directly at the pituitary gland. In male rhesus monkeys, the feedback regulation of FSH secretion is accounted for totally by the physiologically relevant form of inhibin, which appears to be inhibin B. In rams, the feedback regulation of FSH secretion involves the actions of inhibin and testosterone and interactions between these hormones, but the physiologically relevant form of inhibin has not been determined. The mechanisms of action for inhibin are not known.  相似文献   

5.
Recent experiments from our laboratory are consistent with the idea that hypothalamic astrocytes are critical components of the central nervous system (CNS) mediated estrogen positive feedback mechanism. The "astrocrine hypothesis" maintains that ovarian estradiol rapidly increases free cytoplasmic calcium concentrations ([Ca(2+)](i)) that facilitate progesterone synthesis in astrocytes. This hypothalamic neuroprogesterone along with the elevated estrogen from the ovaries allows for the surge release of gonadotropin-releasing hormone (GnRH) that triggers the pituitary luteinizing hormone (LH) surge. A narrow range of estradiol stimulated progesterone production supports an "off-on-off" mechanism regulating the transition from estrogen negative feedback to estrogen positive feedback, and back again. The rapidity of the [Ca(2+)](i) response and progesterone synthesis support a non-genomic, membrane-initiated signaling mechanism. In hypothalamic astrocytes, membrane-associated estrogen receptors (mERs) signal through transactivation of the metabotropic glutamate receptor type 1a (mGluR1a), implying that astrocytic function is influenced by surrounding glutamatergic nerve terminals. Although other putative mERs, such as mERβ, STX-activated mER-Gα(q), and G protein-coupled receptor 30 (GPR30), are present and participate in membrane-mediated signaling, their influence in reproduction is still obscure since female reproduction be it estrogen positive feedback or lordosis behavior requires mERα. The astrocrine hypothesis is also consistent with the well-known sexual dimorphism of estrogen positive feedback. In rodents, only post-pubertal females exhibit this positive feedback. Hypothalamic astrocytes cultured from females, but not males, responded to estradiol by increasing progesterone synthesis. Estrogen autoregulates its own signaling by regulating levels of mERα in the plasma membrane of female astrocytes. In male astrocytes, the estradiol-induced increase in mERα was attenuated, suggesting that membrane-initiated estradiol signaling (MIES) would also be blunted. Indeed, estradiol induced [Ca(2+)](i) release in male astrocytes, but not to levels required to stimulate progesterone synthesis. Investigation of this sexual differentiation was performed using hypothalamic astrocytes from post-pubertal four core genotype (FCG) mice. In this model, genetic sex is uncoupled from gonadal sex. We demonstrated that animals that developed testes (XYM and XXM) lacked estrogen positive feedback, strongly suggesting that the sexual differentiation of progesterone synthesis is driven by the sex steroid environment during early development. This article is part of a Special Issue entitled 'Neurosteroids'.  相似文献   

6.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

7.
In the adult male, the testes produce both sperm and testosterone. The function of the testicles is directed by the central nervous system and pituitary gland. Precise regulation of testicular function is conferred by an elegant feedback loop in which the secretion of pituitary gonadotropins is stimulated by gonadotropin hormone-releasing hormone (GnRH) from the hypothalamus and modulated by testicular hormones. Testosterone and its metabolites estradiol and dihydrotestosterone (DHT) as well as inhibin B inhibit the secretion of the gonadotropins both directly at the pituitary and centrally at the level of the hypothalamus. In the testes, LH stimulates testosterone synthesis and FSH promotes spermatogenesis, but the exact details of gonadotropin action are incompletely understood. A primary goal of research into understanding the hormonal regulation of testicular function is the development of reversible, safe and effective male hormonal contraceptives. The administration of exogenous testosterone suppresses pituitary gonadotropins and hence spermatogenesis in most, but not all, men. The addition of a second agent such as a progestin or a GnRH antagonist yields more complete gonadotropin suppression; such combination regimens effectively suppress spermatogenesis in almost all men and may soon bring the promise of hormonal male contraception to fruition.  相似文献   

8.
Gonadotropin secretion was examined in ovariectomized sheep after passive immunization against gonadotropin-releasing hormone (GnRH). Infusion of ovine anti-GnRH serum, but not control antiserum, rapidly depressed serum concentrations of luteinizing hormone (LH). The anti-GnRH-induced reduction in serum LH was reversed by circhoral (hourly) administration of a GnRH agonist that did not cross-react with the anti-GnRH serum. In contrast, passive immunization against GnRH led to only a modest reduction in serum concentrations of follicle-stimulating hormone (FSH). Pulsatile delivery of the GnRH agonist did not influence serum concentrations of FSH. Continuous infusion of estradiol inhibited and then stimulated gonadotropin secretion in animals passively immunized against GnRH, with gonadotrope function driven by GnRH agonist. However, the magnitude of the positive feedback response was only 10% of the response noted in controls. These data indicate that the estradiol-induced surge of LH secretion in ovariectomized sheep is the product of estrogenic action at both hypothalamic and pituitary loci. Replacement of the endogenous GnRH pulse generator with an exogenous generator of GnRH-like pulses that were invariant in frequency and amplitude could not fully reestablish the preovulatory-like surge of LH induced by estradiol.  相似文献   

9.
目的:探讨蒙药乌力吉-18对大鼠下丘脑-垂体-卵巢轴相关激素及受体的影响。方法:选取40只健康雌性未孕SD大鼠,随机分为空白组、对照组、乌力吉-18高、低2个剂量组,每组10只。空白组灌胃等体积蒸馏水,对照组灌胃逍遥丸,高、低剂量组分别灌胃2.0 g·kg-1·d-1、1.0 g·kg-1·d-1乌力吉-18,连续给药31学艺术d。采用酶联免疫吸附法测定血清促性腺激素释放激素(GnRH)、促卵泡生成素(FSH)、黄体生成素(LH)、雌二醇(E2)及孕酮(PROG)的含量;免疫组化法检测下丘脑组织促性腺激素释放激素(GnRH)、垂体组织促性腺激素释放激素受体(GnRHR)的表达;以蛋白免疫印迹技术检测卵巢组织促卵泡生成素受体(FSHR)、黄体生成素受体(LHR)蛋白表达量。以实时荧光定量PCR检测卵巢组织中FSHR、LHR基因表达量。结果:与空白组比较,乌力吉-18低剂量组可明显升高血清LH含量(P<0.05),上调下丘脑组织GnRH、垂体组织GnRHR表达及卵巢组织FSHR、LHR蛋白表达(P<0.05);乌力吉-18高剂量组可显著升高血清FSH、LH、E2含量(P<0.05),上调下丘脑组织GnRH表达及卵巢组织FSHR表达量(P<0.05),并可显著升高卵巢组织中FSHR、LHR基因表达量(P<0.05);对照组可明显升高血清E2含量(P<0.05)。结论:蒙药乌力吉-18可明显升高血清FSH、LH及E2的含量,促进下丘脑组织GnRH、垂体组织GnRHR及卵巢组织中FSHR、LHR的表达,表明乌力吉-18能够对下丘脑-垂体-卵巢轴相关激素及受体表达产生影响。  相似文献   

10.
5 female patients with isolated hypothalamic hypogonadism were given subcutaneous pulses of gonadotrophin-releasing hormone (GnRH), 2.5-15 micrograms every 90 min, for 2-6 months by means of an automated pump. This treatment produced an increase in serum LH, FSH, and estradiol levels in 4 patients, all of whom became pregnant. The estradiol levels failed to rise in 1 patient, in spite of an adequate LH and FSH response, and a subsequent biopsy showed evidence of primary ovarian failure in addition to the hypothalamic deficit. We conclude that subcutaneous pulsatile GnRH administration is a simple, safe, and relatively inexpensive way to induce ovulation in patients with hypothalamic hypogonadism.  相似文献   

11.
A single injection of estradiol valerate (EV) induces, after a lag period of 4-6 wk, a chronic anovulatory polycystic ovarian (PCO) condition in adult rats. This condition is associated with a selective compromise of luteinizing hormone (LH) release and/or synthesis reflected in low basal serum LH concentrations, decreased pituitary content of LH, and decreased gonadotropin-releasing hormone (GnRH)-stimulated LH secretion. The present study was undertaken to determine to what extent the aberrant LH release in rats with PCO could be related to alterations in pituitary content of GnRH receptors. Pituitary GnRH-receptor content was assessed by the evaluation of saturation binding of a GnRH analog, [125I]-D-Ala6-des-Gly10-GnRH, to pituitary membrane preparations. The receptor content of pituitaries from rats with PCO was compared to that obtained from intact animals at estrus and diestrus. Receptor levels in ovariectomized normal rats and rats with PCO were also assessed. The pituitary GnRH receptor content in PCO rats was similar to that observed in normal controls at estrus and was significantly lower than that for rats at diestrus. Although a twofold increase in pituitary GnRH receptor content was observed at 28 days following the castration of control rats, GnRH receptor content in the pituitaries of PCO rats, at 28 days following ovariectomy, remained unchanged. Although, castration-induced elevations in mean serum LH and follicle-stimulating hormone (FSH) concentrations were observed in both the PCO and control animals, the rise in both gonadotropins was significantly attenuated in the PCO-castrates when compared to the ovariectomized controls. Since GnRH is a major factor in the regulation of pituitary GnRH receptor content, these findings suggest that hypothalamic GnRH release is impaired in rats with PCO and that this impairment is independent of any influences from the polycystic ovaries.  相似文献   

12.
Ovariectomized (OVX), hypothalamo/pituitary-disconnected (HPD) ewes were used to ascertain the short-term effects of estradiol on the number of gonadotropin-releasing hormone (GnRH) receptors in the pituitary gland. The time course of the study was such that measurements were made during the period of short-term negative feedback and positive feedback. Groups of 4 OVX-HPD ewes were given 250-ng pulses of GnRH each hour and an i.m. injection of oil (Group 1) or 50 micrograms estradiol benzoate in oil (Groups 2-4). Blood samples were collected from each ewe prior to treatment with estradiol or oil and again immediately before slaughter. Groups 2, 3, and 4 were killed 6, 16, and 20 h, respectively, after administration of estradiol. Amplitudes of luteinizing hormone (LH) pulses and average plasma concentrations of LH were reduced 6 h after estradiol treatment. Sixteen and 20 h after injection, the average plasma LH levels were elevated, but pulse amplitudes were similar to preinjection values. The number of GnRH receptors was significantly (p less than 0.01) increased within 6 h of estrogen treatment and further increased 16 and 20 h after treatment. Pituitary content of LH was similar in all groups. These data indicate that the number of GnRH receptors in the pituitary gland of ewes can be acutely influenced by a direct effect of estradiol. However, the magnitude and direction of the change in receptors number does not account for the changes in pituitary responsiveness to GnRH, suggesting estradiol also modifies post-receptor mechanisms that influence secretion of LH.  相似文献   

13.
The differing types of oestrous cycle found in mammals seem to be manifestations of the degree to which the external environment participates in the control of the three main phases of the ovarian cycle, the follicular phase, ovulation, corpus luteum phase. The question of the importance of the external and the internal environment for the manifestations of cyclicity has been discussed by reference to the factors involved in the control of ovarian function. The control of the ovarian cycle involves an interrelated fluctuation in the secretion of the anterior pituitary gonadotrophins FSH and LH, and in certain species LTH, which are under the control of hypophysiotrophic hormones produced in the hypothalamus. The production of these hormones is modified by other hypothalamic and extra–hypothalamic mechanisms, including a probable preoptic cycling mechanism controlling the ovulatory surge of gonadotrophins. These mechanisms can be triggered and timed by means of nervous reflexes arising from a variety of sensory end organs. Also this brain–hypothalamus–pituitary unit appears to contain sex steroid and gonadotropin sensitive elements through which these factors can influence the system. The additional luteotrophin and luteolytic factors involved in corpus luteum control have not been discussed. A brief idea as to how all these factors are integrated for the control of ovarian cyclicity is presented.  相似文献   

14.
We analyse computational modules of a frequency decoding signal transduction network. The gonadotropin releasing hormone (GnRH) signal transduction network mediates the biosynthesis and release of the gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH). The pulsatile pattern of GnRH production by the hypothalamus has a critical influence on the release and synthesis of gonadotropins in the pituitary. In humans, slower pulses lead to the expression of the beta-subunit of the LH protein and cause anovulation and amenorrhea. Higher frequency pulses lead to expression of the alpha subunit and a hypogonadal state. The frequency sensitivity is a consequence of the structure of the GnRH signal transduction network. We analyse individual components of this network, organized into three network architectures, and describe the frequency-decoding capabilities of each of these modules. We find that these modules are comparable to simple circuit elements, some of which integrate and others which perform as frequency sensitive filters. We propose that the cell computes by exploiting variation in the time scales of protein activation (phosphorylation) and gene expression.  相似文献   

15.
Gonadotropin releasing hormone (GnRH) is a hypothalamic neuronal secretory decapeptide that plays a pivotal role in mammalian reproduction. GnRH and its analogues are used extensively in the treatment of hormone dependent diseases and assisted reproductive technology. Fourteen structural variants and three different forms of GnRH, named as hypothalamic GnRH or GnRH-I, mid brain GnRH or GnRH-II and GnRH-III across various species of protochordates and vertebrates have been recognised. The hormone acts by binding to cell surface transmembrane G protein coupled receptors (GPCRs) and activates Gq/11 subfamily of G proteins. Although hypothalamus and pituitary are the principal source and target sites for GnRH, several reports have recently suggested extra-hypothalamic GnRH and GnRH receptors in various reproductive tissues such as ovaries, placenta, endometrium, oviducts, testes, prostrate, and mammary glands. GnRH-II appears to be predominantly expressed in extra pituitary reproductive tissues where it produces its effect by PLC, PKA2, PLD, and AC cell signalling pathways. In these tissues, GnRH is considered to act by autocrine or paracrine manner and regulate ovarian steroidogenesis by having stimulatory as well as inhibitory effect on the production of steroid hormones and apoptosis in ovarian follicle and corpus luteum. In male gonads, GnRH has been shown to cause a direct stimulatory effect on basal steroidogenesis and an inhibitory effect on gonadotropin-stimulated androgen biosynthesis. Recent studies have shown that GnRH is more abundantly present in ovarian, endometrial and prostrate carcinomas. The presence of type-II GnRH receptors in reproductive tissues (e.g. gonads, prostrate, endometrium, oviduct, placenta, and mammary glands) suggests existence of distinct role(s) for type-II GnRH molecule in these tissues. The existence of different GnRH forms indicates the presence of distinctive cognate receptors types in vertebrates and is a productive area of research and may contribute to the development of new generation of GnRH analogues with highly selective and controlled action on different reproductive tissues and the target-specific GnRH analogues could be developed.  相似文献   

16.
Treatment of adult female rats with estradiol valerate produces an intractable hypothalamic impairment that ultimately results in anovulatory acyclicity and polycystic ovaries. Evidence from our laboratory suggests that the hypothalamic impairment compromises regulation of the endogenous opioid system engendering a persistent opiatergic suppression of gonadotropin-releasing hormone secretion, which is subsequently reflected in a chronically low pituitary content of gonadotropin-releasing hormone receptors. If such is the case, inhibition of opiatergic transmission should improve the gonadotropin-releasing hormone pattern resulting in an improvement in the pituitary content of gonadotropin-releasing hormone receptors, and in an amelioration of the polycystic condition. We, therefore, treated rats with the polycystic ovarian condition, with daily injections of naltrexone. Within 1 week, there was a significant increase in the pituitary content of gonadotropin-releasing hormone receptors and a marked improvement in ovarian morphology, indicating that the hypothalamic opiatergic system is chronically active, and contributes significantly to the polycystic ovarian condition.  相似文献   

17.
The control of reproductive function is manifested centrally through the control of hypothalamic release of gonadotropin-releasing hormone (GnRH) in episodic events or pulses. For GnRH release to occur in pulses, GnRH neurons must coordinate release events periodically to elicit a bolus of GnRH. We used a perifusion culture system to examine the release of GnRH from both intact hypothalami and enzymatically dispersed hypothalamic cells after challenge with GnRH analogs to evaluate the role of anatomical neuronal connections on autocrine/paracrine signals by GnRH on GnRH neurons. The potent GnRH agonist des-Gly(10)-D-Ala(6)-GnRH N-ethylamide, potent GnRH antagonists D-Phe(2)-D-Ala(6)-GnRH and D-Phe(2,6)-Pro(3)-GnRH or vehicle were infused, whereas GnRH release from hypothalamic tissue and cells were measured. PULSAR analysis of GnRH release profiles was conducted to evaluate parameters of pulsatile GnRH release. Infusion of the GnRH agonist resulted in a decrease in mean GnRH (P < 0.001), pulse nadir (P < 0.01), and pulse frequency (P < 0.05) but no effect on pulse amplitude. Infusion of GnRH antagonists resulted in an increase in mean GnRH (P < 0.001), pulse nadir (P < 0.05), and pulse frequency (P < 0.05) and in GnRH pulse amplitude only in dispersed cells (P < 0.05). These results are consistent with the hypothesis that GnRH inhibits endogenous GnRH release by an ultrashort-loop feedback mechanism and that treatment of hypothalamic tissue or cells with GnRH agonist inhibits ultrashort-loop feedback, whereas treatment with antagonists disrupts normal feedback to GnRH neurons and elicits an increased GnRH signal.  相似文献   

18.
Steroid control of gonadotropin secretion   总被引:1,自引:0,他引:1  
Current knowledge about the mechanism and site of action of estradiol (E2) and progesterone (P) during the menstrual cycle and the physiological role of androgens is reviewed. In normal women, the positive feedback effect of E2 at the pituitary level is the principal event of the follicular phase inducing the LH surge. P, by its negative feedback at the hypothalamic level and by its positive feedback at the pituitary level regulates GnRH and LH secretion during the luteal phase. Androgens do not directly play a role in gonadotropin regulation.  相似文献   

19.
The duration of postpartum amenorrhea and return of ovulation varies on an individual and population basis. In 1980, in Senegal, the relationship of chronic malnutrition and female fertility was investigated for 2 years. The stability of the female body regarding weight and arm circumference despite a heavy annual workload was a surprising finding. The mean female body mass index was higher for lactating women in amenorrhea than required for restoring menstruation in European women. The mean duration of postpartum amenorrhea was 18.2 +or- .6 months. The difference between those who resumed menstruation (20.9 +or- .9 months) and who still had amenorrhea (25.4 +or- 2.2 months) was significant. The duration of breast feeding determined the duration of amenorrhea. Studies have found a link between ovarian dysfunction and women in harsh third world environments and sportswomen under intensive training with both showing irregular menstruation and amenorrhea. Long duration of cycles in New Guinean women, high amount of anovulation in Zairian forest women, and suppression of testosterone and estradiol levels in hunter-gatherers were found. In affluent Europeans and urbanized women in developing countries postpartum amenorrhea dropped drastically. Long distance runners are often vegetarians with low calorie consumption and with a high degree of menstrual trouble owing to low body fat and weight-for-height. The role of beta-endorphins in the hypothalamic blockade of the gonadotropin releasing hormone pulse generator and high stress or physical training is proven. The functioning of the hypothalamo-pituitary-ovarian axis can be hurt by intensive training. Short-term fasting also suppressed the pulsatile luteinizing hormone and testosterone secretion. The protocol and methodology of an etiological study is outlined regarding the factors of this hypothesis on amenorrhea.  相似文献   

20.
So WK  Cheng JC  Poon SL  Leung PC 《The FEBS journal》2008,275(22):5496-5511
The hypothalamic decapeptide gonadotropin-releasing hormone (GnRH) is well known for its role in the control of pituitary gonadotropin secretion, but the hormone and receptor are also expressed in extrapituitary tissues and tumor cells, including epithelial ovarian cancers. It is hypothesized that they may function as a local autocrine regulatory system in nonpituitary contexts. Numerous studies have demonstrated a direct antiproliferative effect on ovarian cancer cell lines of GnRH and its synthetic analogs. This effect appears to be attributable to multiple steps in the GnRH signaling cascade, such as cell cycle arrest at G(0)/G(1). In contrast to GnRH signaling in pituitary gonadotropes, the involvement of G(alpha q), protein kinase C and mitogen-activated protein kinases is less apparent in neoplastic cells. Instead, in ovarian cancer cells, GnRH receptors appear to couple to the pertussis toxin-sensitive protein G(alpha i), leading to the activation of protein phosphatase, which in turn interferes with growth factor-induced mitogenic signals. Apoptotic involvement is still controversial, although GnRH analogs have been shown to protect cancer cells from doxorubicin-induced apoptosis. Recently, data supporting a regulatory role of GnRH analogs in ovarian cancer cell migration/invasion have started to emerge. In this minireview, we summarize the current understanding of the antiproliferative actions of GnRH analogs, as well as the recent observations of GnRH effects on ovarian cancer cell apoptosis and motogenesis. The molecular mechanisms that mediate GnRH actions and the clinical applications of GnRH analogs in ovarian cancer patients are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号