首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新生肽链折叠过程中容易出现错误折叠与聚沉,从而导致折叠病等病理现象. 分子伴侣具有辅助其他蛋白质正确折叠,保护蛋白质分子结构的功能.本文选用人肌肌酸激酶为靶蛋白,研究了肽基脯氨酰顺反异构酶人亲环素18(human cyclophilin 18,hCyp18)对人肌肌酸激酶去折叠的作用,发现hCyp18能够抑制人肌肌酸激酶在热变性与化学变性过程中的失活与构象变化,并抑制人肌肌酸激酶在化学变性过程中的聚沉,因此推断hCyp18具有针对人肌肌酸激酶的分子伴侣功能.本文同时研究了hCyp18与人肌肌酸激酶的结合作用,对hCyp18的作用机制进行了初步探讨.  相似文献   

2.
Assembly of the HIV-1 virus involves, in part, strong interactions between the capsid (CA) domains of the Gag polyprotein. During maturation, the core of HIV-1 virions undergoes profound morphological changes due primarily to proteolysis of the CA domain from other Gag domains which may allow for more efficient disassembly of the viral core in the early stages of infection. The host protein cyclophilin A (CypA), a cis-trans prolyl isomerase, in some way seems to assist in this assembly/disassembly process. Using an unproteolyzed construct of CA, we show that binding of CypA induces a large-scale conformational change in CA that is independent of its cis-trans prolyl isomerase activity. This change appears to be mediated by Cys-198 of CA since mutation to Ala renders CypA unable to induce this change and alters the kinetics and stability of protein cores that may ultimately result in inefficient disassembly of viral cores. Alternately, mutation of the second CA Cys (C218A) allows for CypA-induced conformational changes but alters the kinetics and morphology of the protein cores that may ultimately result in inefficient assembly of viral cores. These studies show the importance of the CA Cys residues in mediating the contacts needed for viral assembly and disassembly.  相似文献   

3.
Heterodimeric luciferase from Vibrio harveyi had been established as a unique model enzyme for direct measurements of the effects of molecular chaperones and folding catalysts on protein folding and subunit assembly after de novo synthesis of subunits in rabbit reticulocyte lysate. It was observed that luciferase assembly can be separated in time from synthesis of the two subunits and that under these post-translational conditions assembly was inhibited by either ATP depletion or inhibition of peptidylprolyl cis/trans isomerases, that is, by addition of cyclosporin A or FK506. Furthermore, it was observed that the inhibitory effect of FK506 on luciferase assembly can be suppressed by addition of purified cyclophilin, thereby providing the first direct evidence for the involvement of peptidylprolyl cis/trans isomerases in protein biogenesis in the eukaryotic cytosol. Here the ATP requirement in luciferase assembly has been characterized. Depletion of either Hsp90 or CCT from reticulocyte lysate did not interfere with luciferase assembly. However, addition of purified Hsc70 stimulated luciferase assembly. While addition of purified Hsp40 did not have any effect on luciferase assembly, the stimulatory effect of Hsc70 was further increased by Hsp40. Thus, after synthesis of the two subunits in reticulocyte lysate assembly of heterodimeric luciferase involves Hsc70 and its co-chaperone Hsp40. Therefore, Hsc70 aids protein biogenesis in the eukaryotic cytosol not only at the levels of nascent polypeptide chains and precursor proteins that have to be kept competent for transport into cell organelles, but also at the level of subunits that have to be kept competent for assembly.  相似文献   

4.
Intercellular cholesterol transport in the brain is carried by high density lipoprotein (HDL) generated in situ by cellular interaction with the apolipoprotein apoE, which is mainly synthesized by astrocytes, and with apoA-I secreted by cells such as endothelial cells. Rat astrocytes in fact generate HDL with extracellular apoA-I in addition to releasing HDL with endogenously synthesized apoE, seemingly by the same mechanism as the HDL assembly for systemic circulation. Relating to this reaction, apoA-I induced translocation of newly synthesized cholesterol and phospholipid to the cytosol prior to extracellular assembly of HDL, accompanied by an increase of caveolin-1 in the cytosol, activation of sterol regulatory element-binding protein, and enhancement of cholesterol synthesis. The lipid translocated into the cytosol was recovered in the fraction with a density of 1.09-1.16 g/ml as well as caveolin-1 and cyclophilin A. Cyclosporin A inhibited these apoA-I-mediated reactions and suppressed apoA-I-mediated cholesterol release. The findings suggest that such translocation of cholesterol and phospholipid into the cytosol is related to the apo A-I-mediated HDL assembly in astrocytes through functional association with caveolin-1 and a cyclosporin A-sensitive cyclophilin protein(s).  相似文献   

5.
6.
Using redox proteomics techniques to characterize the thiol status of proteins in human T lymphocytes, we identified cyclophilin A (CypA) as a specifically oxidized protein early after mitogen activation. CypA is an abundantly expressed cytosolic protein, target of the immunosuppressive drug cyclosporin A (CsA), for which a variety of functions has been described. In this study, we could identify CypA as a protein undergoing glutathionylation in vivo. Using MALDI-MS we identified Cys52 and Cys62 as targets of glutathionylation in T lymphocytes, and, using bioinformatic tools, we defined the reasons for the susceptibility of these residues to the modification. In addition, we found by circular dichroism spectroscopy that glutathionylation has an important impact on the secondary structure of CypA. Finally, we suggest that glutathionylation of CypA may have biological implications and that CypA may play a key role in redox regulation of immunity.  相似文献   

7.
HIV-1 assembly and disassembly (uncoating) processes are critical for the HIV-1 replication. HIV-1 capsid (CA) and human cyclophilin A (CypA) play essential roles in these processes. We designed and synthesized a series of thiourea compounds as HIV-1 assembly and disassembly dual inhibitors targeting both HIV-1 CA protein and human CypA. The SIV-induced syncytium antiviral evaluation indicated that all of the inhibitors displayed antiviral activities in SIV-infected CEM cells at the concentration of 0.6–15.8 μM for 50% of maximum effective rate. Their abilities to bind CA and CypA were determined by ultraviolet spectroscopic analysis, fluorescence binding affinity and PPIase inhibition assay. Assembly studies in vitro demonstrated that the compounds could potently disrupt CA assembly with a dose-dependent manner. All of these molecules could bind CypA with binding affinities (Kd values) of 51.0–512.8 μM. Fifteen of the CypA binding compounds showed potent PPIase inhibitory activities (IC50 values < 1 μM) while they could not bind either to HIV-1 Protease or to HIV-1 Integrase in the enzyme assays. These results suggested that 15 compounds could block HIV-1 replication by inhibiting the PPIase activity of CypA to interfere with capsid disassembly and disrupting CA assembly.  相似文献   

8.
A cyclophilin functions in pre-mRNA splicing   总被引:8,自引:0,他引:8  
We report that the cyclophilin USA-CyP is part of distinct complexes with two spliceosomal proteins and is involved in both steps of pre-mRNA splicing. The splicing factors hPrp18 and hPrp4 have a short region of homology that defines a high affinity binding site for USA-CyP in each protein. USA-CyP forms separate, stable complexes with hPrp18 and hPrp4 in which the active site of the cyclophilin is exposed. The cyclophilin inhibitor cyclosporin A slows pre-mRNA splicing in vitro, and we show that its inhibition of the second step of splicing is caused by blocking the action of USA-CyP within its complex with hPrp18. Cyclosporin A also slows splicing in vivo, and we show that this slowing results specifically from inhibition of USA-CyP. Our results lead to a model in which USA-CyP is carried into the spliceosome in complexes with hPrp4 and hPrp18, and USA-CyP acts during splicing within these complexes. These results provide an example of the function of a cyclophilin in a complex process and provide insight into the mechanisms of action of cyclophilins.  相似文献   

9.
We report the identification of a novel domain in the Gag protein of Moloney murine leukemia virus (MoLV) that is important for the formation of spherical cores. Analysis of 18 insertional mutations in the N-terminal domain of the capsid protein (CA) identified 3 that were severely defective for viral assembly and release. Transmission electron microscopy of cells producing these mutants showed assembly of Gag proteins in large, flat or dome-shaped patches at the plasma membrane. Spherical cores were not formed, and viral particles were not released. This late assembly/release block was partially rescued by wild-type virus. All three mutations localized to the small loop between alpha-helices 4 and 5 of CA, analogous to the cyclophilin A-binding loop of human immunodeficiency virus type 1 CA. In the X-ray structure of the hexameric form of MLV CA, this loop is located at the periphery of the hexamer. The phenotypes of mutations in this loop suggest that formation of a planar lattice of Gag is unhindered by mutations in the loop. However, the lack of progression of these planar structures to spherical ones suggests that mutations in this loop may prevent formation of pentamers or of stable pentamer-hexamer interactions, which are essential for the formation of a closed, spherical core. This region in CA, focused to a few residues of a small loop, may offer a novel therapeutic target for retroviral diseases.  相似文献   

10.
Peptide metalloconstructs display interesting conformations, activities, and resistance to proteolysis. However, introduction of a metal core close to the residues that interact with the protein might strongly affect the binding. We investigated the effects of a coordinated oxorhenium core on the binding of model peptides to cyclophilin hCyp-18, a protein implicated in important biological processes and several diseases. For this purpose, we synthesized a series of linear metalloconstructs bearing an oxorhenium(V) core (ReO3+), as well as a peptide cyclized through oxorhenium(V) coordination. All these peptides contain an Ala-Pro-Xaa-pNA moiety (Xaa = Cys derivative) and are anticipated to bind simultaneously to the S1-S1' and S2'-S3' subsites of hCyp-18. Therefore, the metal core is coordinated to both the cysteine residue and exogenous or endogenous NS2 tridentate systems. Cyclization of the peptide through metal coordination did not affect the affinity whereas bimolecular oxorhenium metalloconstructs bind hCyp-18 with a slightly better affinity than the corresponding nonmetalated peptide. Peptide labeling with a 99mTcO3+ core was also carried out successfully.  相似文献   

11.
R Weisman  J Creanor    P Fantes 《The EMBO journal》1996,15(3):447-456
Cyclophilins are peptidyl-prolyl cis-trans isomerases (PPIases) which have been implicated in intracellular protein folding, transport and assembly. Cyclophilins are also known as the intracellular receptors for the immunosuppressive drug cyclosporin A (CsA). The most common type of cyclophilins are the 18 kDa cytosolic proteins containing only the highly conserved core domain for PPIase and CsA binding activities. The wis2+ gene of the fission yeast Schizosaccharomyces pombe was isolated as a multicopy suppressor of wee1-50 cdc25-22 win1-1, a triple mutant strain which exhibits a cell cycle defect phenotype. Sequence analysis of wis2+ reveals that it encodes a 40 kDa cyclophilin-like protein, homologous to the mammalian cyclophilin 40. The 18 kDa cyclophilin domain (CyP-18) of wis2 is followed by a C-terminal region of 188 amino acids. The C-terminal region of wis2 is essential for suppression of the triple mutant defect. Furthermore this region of the protein is able to confer suppression activity on the 18 kDa S.pombe cyclophilin, cyp1, since a hybrid protein consisting of an 18 kDa S.pombe cyclophilin (cyp1) fused to the C-terminus of wis2 shows suppression activity. We also demonstrate that the level of wis2+ mRNA increases 10- to 20-fold upon heat shock of S.pombe cells suggesting a role for wis2+ in the heat-shock response.  相似文献   

12.
Salmonella phage P22, which serves as an assembly paradigm for icosahedral double-stranded DNA viruses, packages its viral genome through a capsid channel (portal) comprising 12 copies of a 725-residue subunit. Secondary and tertiary structures of the portal subunit in monomeric and dodecameric states have been investigated by Raman spectroscopy using a His6-tagged recombinant protein that self-assembles in vitro [Moore, S. D., and Prevelige, P. E., Jr. (2001) J. Biol. Chem. 276, 6779-6788]. The portal protein exhibits Raman secondary structure markers typical of a highly alpha-helical subunit fold that is little perturbed by assembly. On the other hand, Raman markers of subunit side chains change dramatically with assembly, an indication of extensive changes in side chain environments. The cysteinyl Raman signature of the portal consists of a complex pattern of sulfhydryl stretching bands, revealing diverse hydrogen-bonding states for the four S-H groups per subunit (Cys 153, Cys 173, Cys 283, and Cys 516). Upon assembly, the population of strongly hydrogen-bonded S-H groups decreases, while the population of weakly hydrogen-bonded S-H groups increases, implying that specific intrasubunit S-H.X hydrogen bonds must be weakened to effect dodecamer assembly and that the molecular mechanism involves reorganization of subunit domains without appreciable changes in domain conformations. Comparison with other viral protein assemblies suggests an assembly process not requiring metastable intermediates. The recently published X-ray structure of the phi29 portal [Simpson, A. A., et al. (2000) Nature 408, 745-750] shows that residues 125-225 lining the channel surface form alpha-helical modules spaced by short beta-strands and turns; a surprisingly close secondary structure homology is predicted for residues 240-350 of the P22 portal, despite no apparent sequence homology. This motif is proposed as an evolutionarily conserved domain involved in DNA translocation.  相似文献   

13.
Leukocyte chemotactic activity of cyclophilin.   总被引:14,自引:0,他引:14  
During the purification of eosinophil chemotactic factors synthesized by the uterus in response to estrogen we isolated a protein having an N-terminal (15 amino acids) sequence identical to that of rat cyclophilin. Our data demonstrate that cyclophilin, a cytosolic protein isolated from bovine thymocytes, which specifically binds the immunosuppressive drug cyclosporin A, as well as recombinant human cyclophilin, displays eosinophil chemotactic activity. In addition to its chemotactic activity, cyclophilin stimulated the release of peroxidase activity from eosinophils. Maximal chemotactic activity of cyclophilin was achieved at a concentration of approximately 10 nM. At similar concentrations cyclophilin was also able to stimulate the migration of neutrophils. This chemotactic activity could be prevented by the addition of cyclosporin A, but not by a nonimmunosuppressive analog (1-fur-furyl-cyclosporin A) at similar concentrations. This chemotactic activity may represent an additional mechanism by which immunosuppressive drugs function to prevent tissue rejection.  相似文献   

14.
Rieske oxygenases catalyze a wide variety of important oxidation reactions. Here we report the characterization of a novel Rieske N-oxygenase, aminopyrrolnitrin oxygenase (PrnD) that catalyzes the unusual oxidation of an arylamine to an arylnitro group. PrnD from Pseudomonas fluorescens Pf5 was functionally expressed in Escherichia coli, and the activity of the purified PrnD was reconstituted, which required in vitro assembly of the Rieske iron-sulfur cluster into the protein and the presence of NADPH, FMN, and an E. coli flavin reductase SsuE. Biochemical and bioinformatics studies indicated that the reconstituted PrnD contains a Rieske iron-sulfur cluster and a mononuclear iron center that are formed by residues Cys(69), Cys(88), His(71), His(91), Asp(323), His(186), and His(191), respectively. The enzyme showed a limited range of substrate specificity and catalyzed the conversion of aminopyrrolnitrin into pyrrolnitrin with K(m) = 191 microM and k(cat) = 6.8 min(-1). Isotope labeling experiments with (18)O(2) and H(2)(18)O suggested that the oxygen atoms in the pyrrolnitrin product are derived exclusively from molecular oxygen. In addition, it was found that the oxygenation of the arylamine substrates catalyzed by PrnD occurs at the enzyme active site and does not involve free radical chain reactions. By analogy to known examples of arylamine oxidation, a catalytic mechanism for the bioconversion of amino pyrrolnitrin into pyrrolnitrin was proposed. Our results should facilitate further mechanistic and crystallographic studies of this arylamine oxygenase and may provide a new enzymatic route for the synthesis of aromatic nitro compounds from their corresponding aromatic amines.  相似文献   

15.
The DNA packaging machine (portal assembly) of bacteriophage P22 is constructed from 12 copies of a multidomain 725-residue subunit comprising a complex alpha/beta fold. The portal subunit contains four cysteines (Cys 153, Cys 173, Cys 283, and Cys 516), which produce distinctive Raman markers in the spectral interval 2500-2600 cm(-1) originating from S-H bond-stretching vibrations diagnostic of S-H...X hydrogen-bonding interactions. The Raman spectrum is unique in the capability to characterize cysteine sulfhydryl interactions in proteins and shows that portal cysteine environments are significantly altered by assembly (Rodriguez-Casado et al. (2001) Biochemistry 40, 13583-13591). We have employed site-directed mutagenesis, size-exclusion chromatography, and Raman difference spectroscopy to characterize the roles of portal cysteines in subunit folding and dodecamer assembly. The stability of the portal monomer is severely reduced by a Cys --> Ser point mutation introduced at either residue 173 or 516. In the case of C516S, the destabilized monomer still forms portal rings, as visualized by negative-stain electron microscopy, whereas portal ring formation cannot be detected for C173S, which forms aberrant aggregates. The C283S mutant is a hyperstable monomer that is defective in portal ring formation. Interestingly, Cys 283 is suggested by secondary structure homology with the phi29 portal to be within a domain involved in DNA translocation. Conversely, the phenotype of the C153S mutant is close to that of the wild-type protein, implying that the sulfhydryl moiety of Cys 153 is not essential to formation of the native subunit fold and productive assembly dynamics. The present results demonstrate that cysteines of the P22 portal protein span a wide range of sulfhydryl hydrogen-bonding strengths in the wild-type assembly, that three of the four sulfhydryls play key roles in portal protein stability and assembly kinetics, and that substitution of a mutant seryl interaction (O-H...X) for a wild-type cysteinyl interaction (S-H...X) can either stabilize or destabilize the native fold depending upon sequence context.  相似文献   

16.
Li L  Li Z  Wang C  Xu D  Mariano PS  Guo H  Dunaway-Mariano D 《Biochemistry》2008,47(16):4721-4732
L-arginine deiminase (ADI) catalyzes the hydrolysis of L-arginine to form L-citrulline and ammonia via two partial reactions. A working model of the ADI catalytic mechanism assumes nucleophilic catalysis by a stringently conserved active site Cys and general acid-general base catalysis by a stringently conserved active site His. Accordingly, in the first partial reaction, the Cys attacks the substrate guanidino C zeta atom to form a tetrahedral covalent adduct, which is protonated by the His at the departing ammonia group to facilitate the formation of the Cys- S-alkylthiouronium intermediate. In the second partial reaction, the His activates a water molecule for nucleophilic addition at the thiouronium C zeta atom to form the second tetrahedral intermediate, which eliminates the Cys in formation of the L-citrulline product. The absence of a basic residue near the Cys thiol suggested that the electrostatic environment of the Cys thiol, in the enzyme-substrate complex, stabilizes the Cys thiolate anion. The studies described in this paper explore the mechanism of stabilization of the Cys thiolate. First, the log(k(cat)/K(m)) and log k(cat) pH rate profiles were measured for several structurally divergent ADIs to establish the pH range for ADI catalysis. All ADIs were optimally active at pH 5, which suggested that the Cys pKa is strongly perturbed by the prevailing electrostatics of the ADI active site. The p K a of the Bacillus cereus ADI (BcADI) was determined by UV-pH titration to be 9.6. In contrast, the pKa determined by iodoacetamide Cys alkylation is 6.9. These results suggest that the negative electrostatic field from the two opposing Asp carboxylates perturbs the Cys pKa upward in the apoenzyme and that the binding of the iodoacetamide (a truncated analogue of the citrulline product) between the Cys thiol and the two Asp carboxylates shields the Cys thiol, thereby reducing its pKa. It is hypothesized that the bound positively charged guanidinium group of the L-arginine substrate further stabilizes the Cys thiolate. The so-called "substrate-assisted" Cys ionization, first reported by Fast and co-workers to operate in the related enzyme dimethylarginine dimethylaminohydrolase [Stone, E. M., Costello, A. L., Tierney, D. L., and Fast, W. (2006) Biochemistry 45, 5618-5630], was further explored computationally in ADI by using an ab initio quantum mechanics/molecular mechanics method. The energy profiles for formation of the tetrahedral intermediate in the first partial reaction were calculated for three different reaction scenarios. From these results, we conclude that catalytic turnover commences from the active configuration of the ADI(L-arginine) complex which consists of the Cys thiolate (nucleophile) and His imidazolium ion (general acid) and that the energy barriers for the nucleophilic addition of Cys thiolate to the thiouronium C zeta atom and His imidazolium ion-assisted elimination from the tetrahedral intermediate are small.  相似文献   

17.
We examined how a particular type of intermolecular disulfide (ds) bond is formed in the capsid of a cytoplasmically replicating nonenveloped animal virus despite the normally reducing environment inside cells. The micro 1 protein, a major component of the mammalian reovirus outer capsid, has been implicated in penetration of the cellular membrane barrier during cell entry. A recent crystal structure determination supports past evidence that the basal oligomer of micro 1 is a trimer and that 200 of these trimers surround the core in the fenestrated T=13 outer capsid of virions. We found in this study that the predominant forms of micro 1 seen in gels after the nonreducing disruption of virions are ds-linked dimers. Cys679, near the carboxyl terminus of micro 1, was shown to form this ds bond with the Cys679 residue from another micro 1 subunit. The crystal structure in combination with a cryomicroscopy-derived electron density map of virions indicates that the two subunits that contribute a Cys679 residue to each ds bond must be from adjacent micro 1 trimers in the outer capsid, explaining the trimer-dimer paradox. Successful in vitro assembly of the outer capsid by a nonbonding mutant of micro 1 (Cys679 substituted by serine) confirmed the role of Cys679 and suggested that the ds bonds are not required for assembly. A correlation between micro 1-associated ds bond formation and cell death in experiments in which virions were purified from cells at different times postinfection indicated that the ds bonds form late in infection, after virions are exposed to more oxidizing conditions than those in healthy cells. The infectivity measurements of the virions with differing levels of ds-bonded micro 1 showed that these bonds are not required for infection in culture. The ds bonds in purified virions were susceptible to reduction and reformation in situ, consistent with their initial formation late in morphogenesis and suggesting that they may undergo reduction during the entry of reovirus particles into new cells.  相似文献   

18.
Cyclophilins are cis-trans-peptidyl-prolyl isomerases that bind to and are inhibited by the immunosuppressant cyclosporin A (CsA). The toxic effects of CsA are mediated by the 18-kDa cyclophilin A protein. A larger cyclophilin of 40 kDa, cyclophilin 40, is a component of Hsp90-steroid receptor complexes and contains two domains, an amino-terminal prolyl isomerase domain and a carboxy-terminal tetratricopeptide repeat (TPR) domain. There are two cyclophilin 40 homologs in the yeast Saccharomyces cerevisiae, encoded by the CPR6 and CPR7 genes. Yeast strains lacking the Cpr7 enzyme are viable but exhibit a slow-growth phenotype. In addition, we show here that cpr7 mutant strains are hypersensitive to the Hsp90 inhibitor geldanamycin. When overexpressed, the TPR domain of Cpr7 alone complements both cpr7 mutant phenotypes, while overexpression of the cyclophilin domain of Cpr7, full-length Cpr6, or human cyclophilin 40 does not. The open reading frame YBR155w, which has moderate identity to the yeast p60 homolog STI1, was isolated as a high-copy-number suppressor of the cpr7 slow-growth phenotype. We show that this Sti1 homolog Cns1 (cyclophilin seven suppressor) is constitutively expressed, essential, and found in protein complexes with both yeast Hsp90 and Cpr7 but not with Cpr6. Cyclosporin A inhibited Cpr7 interactions with Cns1 but not with Hsp90. In summary, our findings identify a novel component of the Hsp90 chaperone complex that shares function with cyclophilin 40 and provide evidence that there are functional differences between two conserved sets of Hsp90 binding proteins in yeast.  相似文献   

19.
Denatured and reduced N-terminal extended insulin-like growth factor-1 (AE-IGF-1) was purified from Escherichia coli extracts and subjected to in vitro folding. The renaturation process was shown to be a function of the redox potential of the solution. Folding by different methods had no significant effect on the renaturation. A maximal yield of 60% (w/w) was obtained. The folded AE-IGF-1 was enzymatically converted to IGF-1. The major by-product (20% w/w) was identified as scrambled IGF-1. Enzymatic digestion at alkaline and acidic pH suggested two possible disulphide bond arrangements; (i) Cys6-Cys47, Cys18-Cys61, Cys48-Cys52; or (ii) Cys6-Cys52, Cys18-Cys61, Cys47 and Cys48 being in their reduced forms. Energy minimization and molecular modelling suggested that the scrambled IGF-1, having reduced cysteines at positions 47 and 48, was the energetically most stable conformation of the two.  相似文献   

20.
Caveolin-1 is a palmitoylated protein involved in assembly of signaling molecules in plasma membrane subdomains termed caveolae and in intracellular cholesterol transport. Three cysteine residues in the C terminus of caveolin-1 are subject to palmitoylation, which is not necessary for caveolar targeting of caveolin-1. Protein palmitoylation is a post-translational and reversible modification that may be regulated and that in turn may regulate conformation, membrane association, protein-protein interactions, and intracellular localization of the target protein. We have undertaken a detailed analysis of [(3)H]palmitate incorporation into caveolin-1 in aortic endothelial cells. The linkage of palmitate to caveolin-1 was hydroxylamine-sensitive and thus presumably a thioester bond. However, contrary to expectations, palmitate incorporation was blocked completely by the protein synthesis inhibitors cycloheximide and puromycin. In parallel experiments to show specificity, palmitoylation of aortic endothelial cell-specific nitric-oxide synthase was unaffected by these reagents. Inhibitors of protein trafficking, brefeldin A and monensin, blocked caveolin-1 palmitoylation, indicating that the modification was not cotranslational but rather required caveolin-1 transport from the endoplasmic reticulum and Golgi to the plasma membrane. In addition, immunophilin chaperones that form complexes with caveolin-1, i.e. FK506-binding protein 52, cyclophilin A, and cyclophilin 40, were not necessary for caveolin-1 palmitoylation because agents that bind immunophilins did not inhibit palmitoylation. Pulse-chase experiments showed that caveolin-1 palmitoylation is essentially irreversible because the release of [(3)H]palmitate was not significant even after 24 h. These results show that [(3)H]palmitate incorporation is limited to newly synthesized caveolin-1, not because incorporation only occurs during synthesis but because the continuous presence of palmitate on caveolin-1 prevents subsequent repalmitoylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号