首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty-one aromatic and aliphatic analogs of alpha-ketoglutarate were studied kinetically for their interaction with the alpha-ketoglutarate binding site of gamma-butyrobetaine hydroxylase obtained from Pseudomonas sp. AK1. Together, the compounds represent structural permutations probing the contribution of: 1) the C5 carboxyl group of alpha-ketoglutarate (domain I); 2) the C1-C2 keto acid moiety of alpha-ketoglutarate (domain II); 3) the distance between domains I and II; and 4) the spatial relationship of the two domains required for optimal interaction with the cosubstrate binding site. All compounds were competitive inhibitors for alpha-ketoglutarate (Km 0.018 mM). Functionally, two subsites of the cosubstrate binding site were evident: subsite I for polar interaction with the C5 carboxyl group, and subsite II, comprising of two distinct cis-oriented coordination sites of the catalytic ferrous ion which interact with the C1-C2 keto acid moiety. The most efficient inhibitors were pyridine 2,4-dicarboxylate (Ki 0.0002 mM) and 3,4-dihydroxybenzoate (Ki 0.0006 mM). Both compounds contain a carboxyl group and a chelating moiety corresponding to domains I and II of alpha-ketoglutarate, respectively. The fixed orientation of these groups in both analogs was used to assess intersubsite distance and spatial relationship required for optimal interaction with the cosubstrate binding site. Binding at subsite I and chelation at subsite II were indispensible for effective competitive inhibition. The distance between these two domains also helped determine whether attachment at the cosubstrate binding site would be catalytically productive. This was emphasized by the failure of either oxaloacetate or alpha-ketoadipinate to promote hydroxylation. Optimal interdomain distance, however, was not sufficient for cosubstrate utilization, as pyridine 2,4-dicarboxylate, with an interdomain distance identical to alpha-ketoglutarate in its staggered conformation, did not sustain hydroxylation. In the overall, these studies suggest that alpha-ketoglutarate utilization occurs in a ligand reaction at the active site ferrous ion of gamma-butyrobetaine hydroxylase. This is of particular interest since the delineated stereochemical mode of oxidative decarboxylation could generate the reactive oxo-iron species that was shown experimentally to promote gamma-butyrobetaine hydroxylation by an abstraction-recombination mechanism (Blanchard, J. S., and Englard, S. (1983) Biochemistry 22, 5922-5928; Englard, S., Blanchard, J. S., and Midelfort, C. F. (1985) Biochemistry 24, 1110-1116).  相似文献   

2.
Investigation of the effect of different buffer systems on the rate of alpha-ketoglutarate decarboxylase reaction have shown that the pH optimum is 6.8 in tris-maleic, tris-H3PO4 and KH2PO4-KOH buffers, and it is 7.5 in imidazole buffer. The highest reaction rate was observed when using phosphate containing buffers. The increase of phosphate concentration increased considerably the rate of alpha-ketoglutarate decarboxylase reaction. Mg2+ and Ca2+ were shown to affect slightly the reaction rate. Co2+ and Ag+ slightly inactivated the enzyme. Cu2+ turned to be a very efficient inhibitor of alpha-ketoglutarate decarboxylase reaction. Apparent Mikhaelis constants are determined to be 1.6-10(-3) M for alpha-ketoglutaric acid and 1.7-10(-2)M for 2,6-dichlorphenolindophenol.  相似文献   

3.
The metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in perfused livers was monitored by measuring the rate of 14CO2 production from [1-14C]alpha-ketoglutarate. The rates of 14CO2 production and glucose production from [1-14C]alpha-ketoglutarate were increased with increasing perfusate alpha-ketoglutarate concentrations. Vasopressin, angiotensin II, and the alpha 1-adrenergic agonist phenylephrine stimulated transiently by 2.5-fold the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in the presence and absence of Ca2+ in the perfusion medium. High concentrations of glucagon (1 x 10(-8) M) and 8-p-chlorophenylthio-cAMP (100 microM) (data not shown) also stimulated transiently the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction. However, lower glucagon concentrations (1 x 10(-9) M) stimulated the rate of 14CO2 production from [1-14C]alpha-ketoglutarate only under conditions optimized to fix the cellular oxidation-reduction state at an intermediate level, when glucagon (1 x 10(-9) M)-mediated elevation of cAMP content was greater than that observed under highly oxidizing and reducing conditions. These data indicate that agonists which increase cytosolic free Ca2+ levels stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase complex. Furthermore, the data presented here demonstrate for the first time that physiological glucagon concentrations stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction only under conditions known to be optimal for glucagon-mediated Ca2+ mobilization in the isolated perfused rat liver.  相似文献   

4.
The binding of porcine heart mitochondrial malate dehydrogenase and beta-hydroxyacyl-CoA dehydrogenase to bovine heart NADH:ubiquinone oxidoreductase (complex I), but not that of bovine heart alpha-ketoglutarate dehydrogenase complex, is virtually abolished by 0.1 mM NADH. The malate dehydrogenase and beta-hydroxyacyl-CoA enzymes compete in part for the same binding site(s) on complex I as do the malate dehydrogenase and alpha-ketoglutarate dehydrogenase complex enzymes. Associations between mitochondrial malate dehydrogenase and bovine serum albumin were observed. Subtle convection artifacts in short-time centrifugation tests of enzyme association with the Beckman Airfuge are described. Substrate channeling of NADH from both the mitochondrial and cytoplasmic malate dehydrogenase isozymes to complex I and reduction of ubiquinone-1 were shown to occur in vitro by transient enzyme-enzyme complex formation. Excess apoenzyme causes little inhibition of the substrate channeling reaction with both malate dehydrogenase isozymes in spite of tighter equilibrium binding than the holoenzyme to complex I. This substrate channeling could, in principle, provide a dynamic microcompartmentation of mitochondrial NADH.  相似文献   

5.
Illuminated pea (Pisum sativum) chloroplasts actively catalyzed (glutamine plus alpha-ketoglutarate)-dependent O(2) evolution (average of 12 preparations 10.6 mumole mg chlorophyll per hour). The reaction was specific for glutamine and alpha-ketoglutarate; concentrations of 0.2 mm alpha-ketoglutarate and 0.6 mm glutamine, respectively, effected half-maximum rates of O(2) evolution. The reaction was inhibited by 3-(3,4-dichlorophenyl)-1-1-dimethylurea and did not occur in the dark. After osmotic shock chloroplasts did not catalyze O(2) evolution. The reaction was inhibited by azaserine and glutamate but not by 10 mm ammonia, 2.5 mm methionine sulfoximine, or 5 mm amino-oxyacetate; addition of amino-oxyacetate together with aspartate inhibited O(2) evolution. Arsenate (3 mm) enhanced O(2) evolution. The highest molar ratio for O(2) evolved per mole of alpha-ketoglutarate supplied was 0.40; the corresponding values for glutamine in the absence and presence of 3 mm arsenate were 0.20 and 0.24, respectively. The (glutamine plus alpha-ketoglutarate)-dependent O(2) evolution is attributed to photosynthetically coupled glutamate synthase activity and the activity is sufficient to account for the assimilation of inorganic nitrogen. The low molar ratio for glutamine is discussed.Chloroplasts also catalyzed (aspartate plus alpha-ketoglutarate)-dependent O(2) evolution but this reaction was inhibited by 5 mm amino-oxyacetate and it was insensitive to azaserine and methionine sulfoximine. This reaction was attributed to transaminase and photosynthetically coupled malate dehydrogenase activities.  相似文献   

6.
Micrococcus aerogenes grown in media containing glutamate has high levels of glutamate dehydrogenase and alpha-ketoglutarate reductase. The latter enzyme catalyzes the reversible reduction of alpha-ketoglutarate to alpha-hydroxyglutarate in the presence of reduced nicotinamide adenine dinucleotide (NADH). The enzyme has a high specificity for both substrates in either direction and displays Michaelis-Menten kinetics at moderate substrate concentrations. K(m) values of 0.12 to 0.17 mm alpha-ketoglutarate and 0.3 mm NADH for the forward reaction were calculated from data obtained at low substrate concentrations. At high concentrations, this reaction was inhibited by both substrates. The reverse reaction, which proceeded at 0.1 to 0.2 times the rate of the forward reactions, was inhibited by one of the products, alpha-ketoglutarate. K(m) values for the substrates of this reaction were 10 mm for alpha-hydroxyglutarate and 1 mm for nicotinamide adenine dinucleotide. alpha-Ketoglutarate reductase has a molecular weight of 7.5 x 10(4) to 8.2 x 10(4) and is composed of identical polypeptide chains with a molecular weight of 3.6 x 10(4) to 3.8 x 10(4).  相似文献   

7.
The redox state of two SH-groups per enzyme subunit has been shown to control the cooperative properties of alpha-ketoglutarate dehydrogenase. These thiols oxidized, alpha-ketoglutarate dehydrogenase does not exhibit any cooperative properties. The enzyme reduction leads to subunit interactions. It has been found that the most effective agent reducing the alpha-ketoglutarate dehydrogenase thiols essential for the cooperativity is dihydrolipoate, one of the intermediates of the overall alpha-ketoglutarate dehydrogenase reaction. The possibility of changing the properties of alpha-ketoglutarate dehydrogenase in the multienzyme complex under the conditions when the lipoic acid integrated into the complex is reduced, has been investigated. Thus, incubation of the alpha-ketoglutarate dehydrogenase complex with NADH has been found to induce the conversion from the non-cooperative form to the cooperative one, presumably through the reduction of lipoic acid bound to the complex in the reaction catalyzed by lipoyl dehydrogenase, the third component of the complex.  相似文献   

8.
Studies of the alpha-ketoglutarate dehydrogenase complex have demonstrated that inorganic phosphate ions cause a decrease in the Km value for alpha-ketoglutarate without changing the maximum reaction rate. In the absence of phosphate (tris-HCl buffer) at low concentrations of alpha-ketoglutarate there are some indications of enzyme-substrate cooperative interactions (the Hill coefficient is 1,6). The cooperativity is removed by ADP, which increases the apparent affinity of the enzyme for alpha-ketoglutarate. Upon divalent cations binding to EDTA in the presence of high (20 mM) concentrations of alpha-ketoglutarate the reaction rate is decreased only by 20%, while the value of Km for the given substrate shows a sharp rise. The nature of Mg2+, Ca2+, Ba2+ and Mn2+ effects on the alpha-ketoglutarate dehydrogenase complex activity depends on their concentration.  相似文献   

9.
Interaction of rat liver gamma-butyrobetaine hydroxylase (EC 1.14.11.1) with various ligands was studied by following the decarboxylation of alpha-ketoglutarate, formation of L-carnitine, or both. Potassium ion stimulates rat liver gamma-butyrobetaine hydroxylase catalyzed L-carnitine synthesis and alpha-ketoglutarate decarboxylation by 630% and 240%, respectively, and optimizes the coupling efficiency of these two activities. Affinities for alpha-ketoglutarate and gamma-butyrobetaine are increased in the presence of potassium. gamma-Butyrobetaine hydroxylase catalyzed decarboxylation of alpha-ketoglutarate was dependent on the presence of gamma-butyrobetaine, L-carnitine, or D-carnitine in the reaction and exhibited Km(app) values of 29, 52, and 470 microM, respectively. gamma-Butyrobetaine saturation of the enzyme indicated a substrate inhibition pattern in both the assays. Omission of potassium decreased the apparent maximum velocity of decarboxylation supported by all three compounds by a similar percent. beta-Bromo-alpha-ketoglutarate supported gamma-butyrobetaine hydroxylation, although less effectively than alpha-ketoglutarate. The rat liver enzyme was rapidly inactivated by 1 mM beta-bromo-alpha-ketoglutarate at pH 7.0. This inactivation reaction did not show a rate saturation with increasing concentrations of beta-bromo-alpha-ketoglutarate. None of the substrates or cofactors, including alpha-ketoglutarate, protected the enzyme against this inactivation. Unlike beta-bromo-alpha-ketoglutarate, beta-mercapto-alpha-ketoglutarate did not replace alpha-ketoglutarate as a cosubstrate. Both beta-mercapto-alpha-ketoglutarate and beta-glutathione-alpha-ketoglutarate were noncompetitive inhibitors with respect to alpha-ketoglutarate.  相似文献   

10.
We have examined the influence of ATP-sensitive potassium (KATP) channel opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on the changes of energy metabolism in the liver of rats under the stress conditions. The rats were divided in two groups with high and low resistance to hypoxia. The stress was modeled by placing the rats in a cage filled with water and closed with a net. The distance from water to the net was only 5 cm. The effects of KATP opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on ADP-stimulating mitochondrial respiration by Chance, calcium capacity of organellas and processes of lipid peroxidation in the liver of rats with different resistance to hypoxia under the stress condition have been investigated. We have used the next substrates of oxidation: 0.35 mM succinate and 1 mM alpha-ketoglutarate. The additional analyses were conducted with the use of inhibitors: mitochondrial enzyme complex I 10 mM rotenone and succinate dehydrohenase 2 mM malonic acid. It was shown that the stress condition evoked the succinate oxidation and the decrease of alpha-ketoglutarate efficacy, the increase of calcium mitochondrial capacity and the intensification of lipid peroxidation processes. Under the presence of succinate, the increase of O2 uptake with simultaneous decrease of ADP/O ratio in rats with high resistance under stress was observed. Simultaneously, oxidation of alpha-ketoglutarate, a NAD-dependent substrate, was inhibited. Pinacidil caused the reorganization of mitochondrial energy metabolism in favour of NAD-dependent oxidation and the improvment of the protection against stress. The decrease of the efficacy of mitochondrial energy processes functioning was shown in animals with low resistance to hypoxia. KATP channel opener pinacidil has a protective effect on the processes of mitochondrial liver energy support under stress. These changes deal with the increase of alpha-ketoglutarate oxidation (respiratory rate and ADP/O) and the decrease of lipid peroxidation processes. We concluded about protective effect ofpinacidil on mitochondrial functioning under stress.  相似文献   

11.
Lysine epsilon-aminotransferase (LAT) is a PLP-dependent enzyme that is highly up-regulated in nutrient-starved tuberculosis models. It catalyzes an overall reaction involving the transfer of the epsilon-amino group of L-lysine to alpha-ketoglutarate to yield L-glutamate and alpha-aminoadipate-delta-semialdehyde. We have cloned and characterized the enzyme from Mycobacterium tuberculosisH37Rv. We report here the crystal structures of the enzyme, the first from any source, in the unliganded form, external aldimine with L-lysine, with bound PMP and with its C5 substrate alpha-ketoglutarate. In addition to interaction details in the active site, the structures reveal a Glu243 "switch" through which the enzyme changes substrate specificities. The unique substrate L-lysine is recognized specifically when Glu243 maintains a salt-bridge with Arg422. On the other hand, the binding of the common C5 substrates L-glutamate and alpha-ketoglutarate is enabled when Glu243 switches away and unshields Arg422. The structures reported here, sequence conservation and earlier mutational studies suggest that the "glutamate switch" is an elegant solution devised by a subgroup of fold type I aminotransferases for recognition of structurally diverse substrates in the same binding site and provides for reaction specificity.  相似文献   

12.
The activity of alpha-ketoglutarate dehydrogenase complex from pigeon breast muscle is controlled by ADP and the reaction products, i. e. succinyl-CoA and NADH. ADP activates the alpha-ketoglutarate dehydrogenase component of the complex, whereas NADH inhibits alpha-ketoglutarate dehydrogenase and lipoyl dehydrogenase. In the presence of NADH the kinetic curve of the complex with respect to alpha-ketoglutarate and NAD and the dependence of upsilon versus [NAD] and upsilon versus [Lip (SH)2] in the lipoyl dehydrogenase reaction are S-shaped. In the absence of inhibitor ADP had no activating effect on lipoyl dehydrogenase; however, in the presence of NADH ADP decreases the cooperativity for NAD. The cooperative kinetics of the constituent enzymes of the complex are indicative of its allosteric properties. Isolation of the alpha-ketoglutarate dehydrogenase complex and its lipoyl dehydrogenase and alpha-ketoglutarate dehydrogenase components in a desensitized state confirms their allosteric nature. It is assumed that NADH effects of isolated alpha-ketoglutarate dehydrogenase is due to a shift in the equilibrium between different oligomeric forms of the enzyme.  相似文献   

13.
An NADP-linked glutamate dehydrogenase (EC 1.4.1.4) was found in the soluble fraction of Trichomonas vaginalis. Its molecular weight was about 230,000 (gel filtration). The enzyme, partially purified by diafiltration and hydroxyapatite column chromatography, was heat stable (1 hr at 57 C). It catalyzed both the amination of alpha-ketoglutarate (mean Km 0.6 mM) and the deamination of glutamate (mean Km 1.2 mM) The optimum pH of the amination reaction was 6.7, and that of the deamination reaction was 8. Glutamate was a competitive inhibitor of the amination reaction (mean Ki 5.6 mM) and alpha-ketoglutarate a partially competitive inhibitor of the deamination reaction (mean Ki 0.45 mM). Both guanosine and inosine diphosphates (1 mM) increased the Km alpha-ketoglutarate fivefold (mean Ki's 0.3 and 0.4 mM, respectively). Guanosine diphosphate reduced the Km glutamate 40%. Adenosine di- and triphosphate (1 mM) were ineffective. Because the amination reaction displayed substrate inhibition, guanosine and inosine diphosphates were potent natural inhibitors, and ammonia released by deamination reactions would tend to raise pH (amination operative at acid pH), we hypothesize that the deamination reaction may predominate in the living organism.  相似文献   

14.
Partially purified preparations from Aspergillus nidulans were shown to catalyze two alpha-ketoglutarate dependent dioxygenase reactions: the pyrimidine deoxyribonucleoside 2'-hydroxylase (EC 1.14.11.3) and the thymine 7-hydroxylase (EC 1.14.11.6) reactions. These reactions showed an absolute requirement for alpha-ketoglutarate and molecular oxygen and were stimulated by Fe(II), ascorbate and catalase. Both reactions demonstrated a stoichiometry such that for each mole of substrate (deoxyribonucleoside or pyrimidine) hydroxylated one mole of CO2 was produced from alpha-ketoglutarate. These two activities were separated using DEAE-Sephacel chromatography.  相似文献   

15.
Four strains of Desulfovibrio each excreted pyruvate to a constant level during growth; it was re-absorbed when the substrate (lactate) was exhausted. Malate, succinate, fumarate and malonate also accumulated during growth. One of the strains (Hildenborough) excreted alpha-ketoglutarate as well as pyruvate when incubated in nitrogen-free medium; the former was re-absorbed on addition of NH4Cl. In a low-lactate nitrogen-free medium, strain Hildenborough rapidly re-absorbed the pyruvate initially excreted, but did not re-absorb the alpha-ketoglutarate. Arsenite (I mM) prevented the accumulation of alpha-ketoglutarate; I mM-malonate did not affect the accumulation of keto acids. Isocitrate dehydrogenase activity (NAD-specific) in all strains was lower than NADP-specific glutamate dehydrogenase activity. Alpha-Ketoglutarate dehydrogenase could not be detected in any strain. NADPH oxidase activity was demonstrated. This and previous work indicate that a tricarboxylic acid pathway from citrate to alpha-ketoglutarate exists in Desulfovibrio spp., and that succinate can be synthesized via malate and fumarate; however, an intact tricarboxylic acid cycle is evidently not present. The findings are compared with observations on biosynthetic pathways in clostridia, obligate lithotrophs, phototrophs, and methylotrophs, and various facultative bacteria.  相似文献   

16.
The alpha-ketoglutarate dioxygenase, thymine 7-hydroxylase (EC 1.14.11.6), has been purified from cultures of Rhodotorula glutinis grown with thymine as a nitrogen source. The purification scheme developed yielded essentially homogeneous preparations of the 7-hydroxylase and also purified another alpha-ketoglutarate dioxygenase, pyrimidine deoxyribonucleoside 2'-hydroxylase (EC 1.14.11.3). The purity of the 7-hydroxylase was determined with analytical disc gel electrophoresis in which runs were varied with respect to pH, extent of cross-linking, and the presence of sodium dodecyl sulfate-mercaptoethanol. The 7-hydroxylase apparently exists as a monomer since its molecular weight was 42,700 when determined by molecular gel filtration chromatography and was 40,300 when determined by analytical disc gel electrophoresis under denaturing conditions. Gel filtration chromatography under nondenaturing conditions was used to show that the 2'-hydroxylase has a molecular weight of 64,600. The essentially homogeneous preparations of the 7-hydroxylase were shown to catalyze the thymine-, 5-hydroxymethyluracil-, and 5-formyluracil-dependent oxygenations that are coupled to the decarboxylation of alpha-ketoglutarate, as well as a putative uncoupled decarboxylation which is dependent on uracil. Furthermore, these enzyme preparations were used to show that ATP stimulated the 7-hydroxylase reaction in the absence of ascorbate. Even though it is attractive to consider the four pyrimidine-dependent reactions as being catalyzed by the same active site, they were shown to differ markedly in their dependencies on ascorbate or ATP. The effects of ascorbate and ATP on these reactions, and on the 2'-hydroxylase reaction, are discussed in terms of the possible roles of ascorbate and ATP.  相似文献   

17.
The alpha-ketoglutarate dehydrogenase complex of Acetobacter xylinum was purified to homogeneity. It consists of three main polypeptide chains with a total molecular weight of about 2.4 X 10(6). It catalyzes the overall Mg2+ and thiamin pyrophosphate-dependent, NAD+- and CoA-linked oxidative decarboxylation of alpha-ketoglutarate, as well as the partial reactions characteristic of the three enzyme components described for the complex from other sources. Initial velocity studies revealed marked positive cooperativity for the substrate alpha-ketoglutarate (Hill coefficient (nH) = 2.0; concentration of ligand at half-maximum effect (S0.5) = 8 mM). The sigmoidal [alpha-ketoglutarate]-velocity relationship became hyperbolic upon addition of AMP or 3-acetylpyridine adenine dinucleotide (AcPyAD) or in the presence of high concentrations of NAD. S0.5 (alpha-ketoglutarate) decreased to 1 mM, but Vmax was unchanged. Saturation curves for NAD and AMP are sigmoidal (nH = 2) at low alpha-ketoglutarate concentrations and become hyperbolic at high alpha-ketoglutarate concentrations. As judged by S0.5, the relative efficiency of the allosteric effectors is AcPyAD greater than AMP greater than alpha-ketoglutarate- greater than NAD+. Half-maximal changes in nH, S0.5, and activation by AMP occur at a pH significantly different from that of half-maximal activity. A model for the allosteric behavior of the complex is proposed in which the first enzyme component of the complex (E1) is the site for the allosteric interactions and AMP is the primary positive modifier, whereas NAD and AcPyAD act as AMP analogues. The overall reaction is competitively inhibited by NADH with respect to NAD (K1 = 20 micronM) and by succinyl-CoA with respect of CoA (K1 = 3 micronM). The properties of the alpha-ketoglutarate dehydrogenase complex of A. xylinum appear to provide for appropriate partitioning of alpha-ketoglutarate carbon between competing pathways in response to the energy state of the cells.  相似文献   

18.
The findings of previous studies indicate that the genes required for metabolism of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) are typically encoded on broad-host-range plasmids. However, characterization of plasmid-cured strains of Burkholderia sp. strain RASC, as well as mutants obtained by transposon mutagenesis, suggested that the 2,4-D catabolic genes were located on the chromosome of this strain. Mutants of Burkholderia strain RASC unable to degrade 2,4-D (2,4-D- strains) were obtained by insertional inactivation with Tn5. One such mutant (d1) was shown to have Tn5 inserted in tfdARASC, which encodes 2,4-D/alpha-ketoglutarate dioxygenase. This is the first reported example of a chromosomally encoded tfdA. The tfdARASC gene was cloned from a library of wild-type Burkholderia strain RASC DNA and shown to express 2,4-D/alpha-ketoglutarate dioxygenase activity in Escherichia coli. The DNA sequence of the gene was determined and shown to be similar, although not identical, to those of isofunctional genes from other bacteria. Moreover, the gene product (TfdARASC) was purified and shown to be similar in molecular weight, amino-terminal sequence, and reaction mechanism to the canonical TfdA of Alcaligenes eutrophus JMP134. The data presented here indicate that tfdA genes can be found on the chromosome of some bacterial species and suggest that these catabolic genes are rather mobile and may be transferred by means other than conjugation.  相似文献   

19.
Andi B  West AH  Cook PF 《Biochemistry》2004,43(37):11790-11795
Kinetic data have been collected suggesting a preferred sequential ordered kinetic mechanism for the histidine-tagged homocitrate synthase (HCS) from Saccharomyces cerevisiae with alpha-ketoglutarate binding before AcCoA and CoA released before homocitrate. Oxaloacetate is also a substrate for HCS, but with lower affinity than alpha-ketoglutarate. In agreement with the ordered kinetic mechanism desulfo-CoA is uncompetitive and citrate is competitive vs alpha-ketoglutarate. Varying AcCoA, citrate is a noncompetitive inhibitor as predicted, but CoA is noncompetitive vs AcCoA suggesting binding of CoA to E:homocitrate and E:alpha-ketoglutarate. The product CoA behaves in a manner identical to the dead-end analogue desulfo-CoA, suggesting an E:alpha-ketoglutarate:CoA dead-end complex. Data further suggest an irreversible reaction overall, in agreement with the downhill nature of the reaction as a result of homocitryl-CoA hydrolysis. Fluorescence titration data generally agree with the steady state data, but show finite binding of CoA and AcCoA to free enzyme, suggesting that the mechanism may be random with a high degree of synergism of binding between the reactants.  相似文献   

20.
The genes encoding aromatic aminotransferase II (AroAT II) and aspartate aminotransferase (AspAT) from Pyrococcus furiosus have been identified, expressed in Escherichia coli and the recombinant proteins characterized. The AroAT II enzyme was specific for the transamination reaction of the aromatic amino acids, and uses a-ketoglutarate as the amino acceptor. Like the previously characterized AroAT I, AroAT II has highest efficiency for phenylalanine (k(cat)/Km = 923 s(-1) mM(-1)). Northern blot analyses revealed that AroAT I was mainly expressed when tryptone was the primary carbon and energy source. Although the expression was significantly lower, a similar trend was observed for AroAT II. These observations suggest that both AroATs are involved in amino acid degradation. Although AspAT exhibited highest activity with aspartate and alpha-ketoglutarate (k(cat) approximately 105 s(-1)), it also showed significant activity with alanine, glutamate and the aromatic amino acids. With aspartate as the amino donor, AspAT catalyzed the amination of alpha-ketoglutarate, pyruvate and phenyl-pyruvate. No activity was detected with either branched-chain amino acids or alpha-keto acids. The AspAT gene (aspC) was expressed as a polycistronic message as part of the aro operon, with expression observed only when the aromatic amino acids were absent from the growth medium, indicating a role in the biosynthesis of the aromatic amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号