首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen Z  Iyer S  Caplan A  Klessig DF  Fan B 《Plant physiology》1997,114(1):193-201
We previously proposed that salicylic acid (SA)-sensitive catalases serve as biological targets of SA in plant defense responses. To further examine the role of SA-sensitive catalases, we have analyzed the relationship between SA levels and SA sensitivity of catalases in different rice (Oryza sativa) tissues. We show here that, whereas rice shoots contain extremely high levels of free SA, as previously reported (I. Raskin, H. Skubatz, W. Tang, B.J.D. Meeuse [1990] Ann Bot 66: 369-373; P. Silverman, M. Seskar, D. Kanter, P. Schweizer, J.-P. Metraux, I. Raskin [1995] Plant Physiol 108: 633-639), rice roots and cell-suspension cultures have very low SA levels. Catalases from different rice tissues also exhibit differences in sensitivity to SA. Catalase from rice shoots is insensitive to SA, but roots and cell-suspension cultures contain SA-sensitive catalase. The difference in SA sensitivity of catalases from these different tissues correlates with the tissue-specific expression of two catalase genes, CatA and CatB, which encode highly distinctive catalase proteins. CatA, which encodes a catalase with relatively low sequence homology to the tobacco SA-sensitive catalases, is expressed at high levels exclusively in the shoots. On the other hand, in roots and cell-suspension cultures, with northern analysis we detected expression of only the CatB gene, which encodes a catalase with higher sequence homology to tobacco catalases. The role of catalases in mediating some of the SA-induced responses is discussed in light of these results and the recently defined mechanisms of catalase inhibition by SA.  相似文献   

2.
Salicylic acid (SA) could inhibit catalase activity, induce rapid lipid peroxidation and PR-1 gene expression of the tobacco ( Nicotiana tabacum L. ) cell culture which was incubated with exogenous SA. Ρ-ihydroxybenzene and H2O2 could also induce lipid peroxidation and PR-1 gene expression at different level, but they were not able to inhibit the catalase activity of tobacco cells. Inhi0itors of mRNA and protein-synthesis (a-amanitine and cycloheximide, respectively) could not induce both lipid peroxidation and PR-1 gene expression of tobacco cell culture. However, coordinated action with SA respectively, a-amanitine or cycloheximide was able to induce lipid peroxidation effectively, but strongly blocked the activation of PR-1 gene expression by SA in tobacco cell culture. These results suggested that the generation of reactive metabolites or free radicals, which were induced by SA or other inducers through reaction with catalase or other compounds, initiated lipid peroxidation, subsequently activated pathogen-resistance genes expression. Obviously the lipid peroxidation molecule played an important role in SA signal transduction in tobacco.  相似文献   

3.
Du H  Klessig DF 《Plant physiology》1997,113(4):1319-1327
Salicylic acid (SA) is a key component in the signal transduction pathway(s), leading to the activation of certain defense responses in plants after pathogen attack. Previous studies have identified several proteins, including catalase and ascorbate peroxidase, through which the SA signal might act. Here we describe a new SA-binding protein. This soluble protein is present in low abundance in tobacco (Nicotiana tabacum) leaves and has an apparent molecular weight of approximately 25,000. It reversibly binds SA with an apparent dissociation constant of 90 nM, an affinity that is 150-fold higher than that between SA and catalase. The ability of most analogs of SA to compete with labeled SA for binding to this protein correlated with their ability to induce defense gene expression and enhanced resistance. Strikingly, benzothiadiazole, a recently described chemical activator that induces plant defenses and disease resistance at very low rates of application, was the strongest competitor, being much more effective than unlabeled SA. The possible role of this SA-binding protein in defense signal transduction is discussed.  相似文献   

4.
Tobacco SABP2, a 29 kDa protein catalyzes the conversion of methyl salicylic acid (MeSA) into salicylic acid (SA) to induce SAR. Pretreatment of plants with acibenzolar-S-methyl (ASM), a functional analog of salicylic acid induces systemic acquired resistance (SAR). Data presented in this paper suggest that SABP2 catalyzes the conversion of ASM into acibenzolar to induce SAR. Transgenic SABP2-silenced tobacco plants when treated with ASM, fail to express PR-1 proteins and do not induce robust SAR expression. When treated with acibenzolar, full SAR is induced in SABP2-silenced plants. These results show that functional SABP2 is required for ASM-mediated induction of resistance.  相似文献   

5.
Infection of plants by necrotizing pathogens can induce broad-spectrum resistance to subsequent pathogen infection. This systemic acquired resistance (SAR) is thought to be triggered by a vascular-mobile signal that moves throughout the plant from the infected leaves. A considerable amount of evidence suggests that salicylic acid (SA) is involved in the induction of SAR. Because SA is found in phloem exudate of infected cucumber and tobacco plants, it has been proposed as a candidate for the translocated signal. To determine if SA is the mobile signal, grafting experiments were performed using transgenic plants that express a bacterial SA-degrading enzyme. We show that transgenic tobacco root-stocks, although unable to accumulate SA, were fully capable of delivering a signal that renders nontransgenic scions resistant to further pathogen infection. This result indicated that the translocating, SAR-inducing signal is not SA. Reciprocal grafts demonstrated that the signal requires the presence of SA in tissues distant from the infection site to induce systemic resistance.  相似文献   

6.
7.
Radiolabeling studies showed that salicylic acid (SA), an essential component in the signal transduction pathway leading to systemic acquired resistance, is synthesized from phenylalanine (Phe) and benzoic acid in cucumber (Cucumis sativus L.) plants inoculated with pathogens. Leaf discs from plants inoculated with either tobacco necrosis virus or Pseudomonas lachrymans incorporated more [14C]Phe into [14C]SA than mock-inoculated controls. The identity of SA was confirmed by gas chromatography-mass spectrometry. No reduction in specific activity of [14C]SA was observed for either free or bound SA between control and infected plants after feeding [14C]Phe. A specific inhibitor of Phe ammonia-lyase, 2-aminoindan-2-phosphonic acid, completely inhibited the incorporation of [14C]Phe into [14C]SA, although plants treated with 2-aminoindan-2-phosphonic acid could still produce [14C]SA from [14C]benzoic acid. Biosynthesis of SA in tissue inoculated with tobacco necrosis virus followed a transient pattern with the highest induction occurring 72 h postinoculation. Uninfected tissues from an infected plant synthesized de novo more SA than did controls. This suggests the involvement of a systemic signal triggering SA synthesis in tissue distant from the site of infection that display systemic acquired resistance.  相似文献   

8.
9.
The transport of salicylic acid (SA) was studied in cucumber (Cucumis sativus L.) using 14C-labeled benzoic acid that was injected in the cotyledons at the time of inoculation. Primary inoculation with tobacco necrosis virus (TNV) on the cotyledons led to an induction of systemic resistance of the first primary leaf above the cotyledon against Colletotrichum lagenarium as early as 3 d after inoculation. [14C]SA was detected in the phloem or in the first leaf 2 d after TNV inoculation, whereas [14C]benzoic acid was not detected in the phloem during the first 3 d after TNV inoculation of the cotyledons, indicating phloem transport of [14C]SA from cotyledon. In leaf 1, the specific activity of [14C]SA decreased between 1.7 and 8.6 times compared with the cotyledons, indicating that, in addition to transport, leaf 1 also produced more SA. The amount of SA transported after TNV infection of the cotyledon was 9 to 160 times higher than in uninfected control plants. Thus, SA can be transported to leaf 1 before the development of systemic acquired resistance, and SA accumulation in leaf 1 results both from transport from the cotyledon and from synthesis in leaf 1.  相似文献   

10.
We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole-genome microarrays, we characterized the direct effects of SA on bacterial gene expression and showed that SA inhibits induction of virulence (vir) genes and the repABC operon, and differentially regulates the expression of many other sets of genes. Using virus-induced gene silencing, we further demonstrate that plant genes involved in SA biosynthesis and signaling are important determinants for Agrobacterium infectivity on plants. Silencing of ICS (isochorismate synthase), NPR1 (nonexpresser of pathogenesis-related gene 1), and SABP2 (SA-binding protein 2) in N. benthamiana enhanced Agrobacterium infection. Moreover, plants treated with benzo-(1,2,3)-thiadiazole-7-carbothioic acid, a potent inducer of SAR, showed reduced disease symptoms. Our data suggest that SA and SAR both play a major role in retarding Agrobacterium infectivity.  相似文献   

11.
Hydrogen Peroxide Stimulates Salicylic Acid Biosynthesis in Tobacco   总被引:30,自引:2,他引:30       下载免费PDF全文
Leon J  Lawton MA  Raskin I 《Plant physiology》1995,108(4):1673-1678
Hydrogen peroxide induced the accumulation of free benzoic acid (BA) and salicylic acid (SA) in tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. Six hours after infiltration with 300 mM H2O2, the levels of BA and SA in leaves increased 5-fold over the levels detected in control leaves. The accumulation of BA and SA was preceded by the rapid activation of benzoic acid 2-hydroxylase (BA2H) in the H2O2-infiltrated tissues. This enzyme catalyzes the formation of SA from BA. Enzyme activation could be reproduced in vitro by addition of H2O2 or cumene hydroperoxide to the assay mixture. H2O2 was most effective in vitro when applied at 6 mM. In vitro activation of BA2H by peroxides was inhibited by the catalase inhibitor 3-amino-1,2,4-triazole. We suggest that H2O2 activates SA biosynthesis via two mechanisms. First, H2O2 stimulates BA2H activity directly or via the formation of its substrate, molecular oxygen, in a catalase-mediated reaction. Second, higher BA levels induce the accumulation of BA2H protein in the cells and provide more substrate for this enzyme.  相似文献   

12.
Enyedi AJ  Raskin I 《Plant physiology》1993,101(4):1375-1380
Salicylic acid (SA) is a putative signal that activates plant resistance to pathogens. SA levels increase systemically following the hypersensitive response produced by tobacco mosaic virus (TMV) inoculation of tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. The SA increase in the inoculated leaf coincided with the appearance of a [beta]-glucosidase-hydrolyzable SA conjugate identified as [beta]-O-D-glucosylsalicylic acid (GSA). SA and GSA accumulation in the TMV-inoculated leaf paralleled the increase in the activity of a UDP-glucose:salicylic acid 3-O-glucosyltransferase (EC 2.4.1.35) ([beta]-GTase) capable of converting SA to GSA. Healthy tissues had constitutive [beta]-GTase activity of 0.076 milliunits g-1 fresh weight. This activity started to increase 48 h after TMV inoculation, reaching its maximum (6.7-fold induction over the basal levels) 72 h after TMV inoculation. No significant GSA or elevated [beta]-Gtase activity could be detected in the healthy leaf immediately above the TMV-inoculated leaf. The effect of TMV inoculation on the [beta]-GTase and GSA accumulation could be duplicated by infiltrating tobacco leaf discs with SA at the levels naturally produced in TMV-inoculated leaves (2.7-27.0 [mu]g g-1 fresh weight). Pretreatment of leaf discs with the protein synthesis inhibitor cycloheximide inhibited the induction of [beta]-GTase by SA and prevented the formation of GSA. Of 12 analogs of SA tested, only 2,6-dihydroxybenzoic acid induced [beta]-GTase activity.  相似文献   

13.
Systemic induction of pathogenesis-related (PR) proteins in tobacco, which occurs during the hypersensitive response to tobacco mosaic virus (TMV), may be caused by a minimum 10-fold systemic increase in endogenous levels of salicylic acid (SA). This rise in SA parallels PR-1 protein induction and occurs in TMV-resistant Xanthi-nc tobacco carrying the N gene, but not in TMV-susceptible (nn) tobacco. By feeding SA to excised leaves of Xanthi-nc (NN) tobacco, we have shown that the observed increase in endogenous SA levels is sufficient for the systemic induction of PR-1 proteins. TMV infection became systemic and Xanthi-nc plants failed to accumulate PR-1 proteins at 32 degrees C. This loss of hypersensitive response at high temperature was associated with an inability to accumulate SA. However, spraying leaves with SA induced PR-1 proteins at both 24 and 32 degrees C. SA is most likely exported from the primary site of infection to the uninfected tissues. A computer model predicts that SA should move rapidly in phloem. When leaves of Xanthi-nc tobacco were excised 24 hr after TMV inoculation and exudates from the cut petioles were collected, the increase in endogenous SA in TMV-inoculated leaves paralleled SA levels in exudates. Exudation and leaf accumulation of SA were proportional to TMV concentration and were higher in light than in darkness. Different components of TMV were compared for their ability to induce SA accumulation and exudation: three different aggregation states of coat protein failed to induce SA, but unencapsidated viral RNA elicited SA accumulation in leaves and phloem. These results further support the hypothesis that SA acts as an endogenous signal that triggers local and systemic induction of PR-1 proteins and, possibly, some components of systemic acquired resistance in NN tobacco.  相似文献   

14.
Salicylic acid (SA) plays an important role in plant disease resistance. Inoculation of tobacco leaves with incompatible pathogens triggers the biosynthesis of SA which accumulates primarily as the SA 2-O-beta-D-glucoside (SAG) and glucosyl salicylate (GS). The tobacco UDP-glucose:salicylic acid glucosyltransferase (SA GTase) capable of forming both SAG and GS was purified, characterized, and partially sequenced. It has an apparent molecular mass of 48 kDa, a pH optimum of 7.0, and an isoelectric point at pH 4.4. UDP-glucose was the sole sugar donor for the enzyme. However, SA and several phenolics served as glucose acceptors. The apparent K(m) values for UDP-glucose and SA were 0.27 and 1-2 mM, respectively. Zn(2+) and UDP inhibited its activity. The corresponding cDNA clone which encoded a protein of 459 amino acids was isolated from an SA-induced tobacco cDNA library and overexpressed in Escherichia coli. The recombinant protein catalyzed the formation of SAG and GS, and exhibited a broad specificity to simple phenolics, similar to that of the purified enzyme. Northern blot analysis showed that the SA GTase mRNA was induced both by SA and incompatible pathogens. The rapid induction timing of the mRNA by SA indicates that it belongs to the early SA response genes.  相似文献   

15.
Salicylic acid (SA) induces resistance to all plant pathogens, including bacteria, fungi, and viruses, but the mechanism by which SA engenders resistance to viruses is not known. Pretreatment of tobacco mosaic virus (TMV)-susceptible (nn genotype) tobacco tissue with SA reduced the levels of viral RNAs and viral coat protein accumulating after inoculation with TMV. Viral RNAs were not affected equally, suggesting that SA treatment interferes with TMV replication. Salicylhydroxamic acid (SHAM), an inhibitor of the mitochondrial alternative oxidase, antagonized both SA-induced resistance to TMV in nn genotype plants and SA-induced acquired resistance in resistant (NN genotype) tobacco. SHAM did not inhibit induction of the PR-1 pathogenesis-related protein or induction of resistance to Erwinia carotovora or Botrytis cinerea by SA. This indicates that SA induces resistance to TMV via a novel SHAM-sensitive signal transduction pathway (potentially involving alternative oxidase), which is distinct from that leading to resistance to bacteria and fungi.  相似文献   

16.
Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied SA biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of SA accumulation is accompanied by a corresponding increase in the levels of benzoic acid. 14C-Tracer studies with cell suspensions and mock-or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [14C]benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogen-esis-related-1 proteins and increased resistance to TMV in benzoic acid- but not in o-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid.  相似文献   

17.
Elevated levels of salicylic acid (SA) are required for the induction of systemic acquired resistance (SAR) in plants. Recently, a salicylic acid-binding protein (SABP) isolated from tobacco was shown to have catalase activity. Based on this finding elevated levels of hydrogen peroxide (H2O2) were postulated to act as a second messenger of SA in the SAR signal transduction pathway. A series of experiments have been carried out to clarify the role of H2O2 in SAR-signaling. No increase of H2O2 was found during the onset of SAR. Induction of the SAR gene, PR-1, by H2O2 and H2O2-inducing chemicals is strongly suppressed in transgenic tobacco plants that express the bacterial salicylate hydroxylase gene, indicating that H2O2 induction of SAR genes is dependent on SA accumulation. Following treatment of plants with increasing concentrations of H2O2, a dose-dependent accumulation of total SA species was found, suggesting that H2O2 may induce PR-1 gene expression through SA accumulation. While the results do not support a role for H2O2 in SAR signaling, it is suggested that SA inhibition of catalase activity may be important in tissues undergoing a hypersensitive response.  相似文献   

18.
The roles of salicylic acid (SA) and H2O2 in the induction of PR proteins in tobacco have been examined. Studies were conducted on wild-type tobacco and plants engineered to express a bacterial salicylate hydroxylase capable of metabolizing SA to catechol (SH-L plants). Wild-type and PR-1a—GUS-transformed plants express PR-1a following challenge with Pseudomonas syringae pathovar syringae , SA or 2,6-dichloro-isonicotinic acid (INA). In contrast, SH-L plants failed to respond to SA but did express PR-1a following INA treatment. H2O2 and the irreversible catalase inhibitor 3-amino-1,2,4-triazole (3-AT) were found to be weak inducers of PR-1a expression (relative to SA) in wild-type tobacco but were unable to induce PR-1a in SH-L plants, suggesting that the action of these compounds depends upon the accumulation of SA. A model has been proposed suggesting that SA binds to and inhibits a catalase inducing an increase in H2O2 leading to PR protein expression. Catalase activity has been measured in tobacco and no significant changes in activity following infection with P. syringae pv. syringae were detected. Furthermore, inhibition of catalase activity in vitro in plant extracts requires pre-incubation and only occurs at SA concentrations above 250 µM. Leaf disks pre-incubated with 1 mM SA do accumulate SA to these levels and PR-1a is efficiently induced but there is no apparent inhibition of catalase activity. It is also shown that a SA-responsive gene, PR-1a, and a H2O2-sensitive gene, AoPR-1, are both relatively insensitive to 3-AT suggesting that induction of these genes is unlikely to be due entirely to inhibition of an endogenous catalase.  相似文献   

19.
水杨酸对黄瓜子叶表皮气孔开度的调节作用   总被引:1,自引:0,他引:1  
以黄瓜品种中农203(Cucumis sativus L.cv.Zhongnong 203)幼苗为试材,采用SA溶液根部施用和子叶表皮浸泡两种方式,显微观测了不同外源水杨酸(Salicylic acid,SA)溶液处理对其子叶表皮气孔开度的影响,以探讨SA与气孔运动的关系.结果表明:SA子叶表皮浸泡或根部施用后,气孔运动的趋势是随着SA浓度增加而孔径逐渐变小,且SA磷酸缓冲液的作用效果与SA水溶液相似.随着处理时间的延长,气孔开度逐渐变小,且气孔开度与SA处理时间达极显著(r=-0.962**)或显著(r=-0.914*)负相关.溶液低pH值,增强了SA对气孔开度的抑制作用,且SA浓度越高作用越明显;0.1 mmol/L SA处理后,pH为8、7、6溶液的气孔开度抑制率分别为90.2%、93.8%和96.3%,即SA溶液对气孔开度的抑制率随着溶液pH降低而升高.可见,外源SA能够促进气孔关闭,其作用随着SA浓度升高、处理时间延长和溶液pH值降低而增强,相对于磷酸缓冲液,以蒸馏水作为溶剂的SA溶液促进气孔关闭的作用更大.  相似文献   

20.
Salicylic acid activates a 48-kD MAP kinase in tobacco.   总被引:16,自引:0,他引:16       下载免费PDF全文
The involvement of phosphorylation/dephosphorylation in the salicylic acid (SA) signal transduction pathway leading to pathogenesis-related gene induction has previously been demonstrated using kinase and phosphatase inhibitors. Here, we show that in tobacco suspension cells, SA induced a rapid and transient activation of a 48-kD kinase that uses myelin basic protein as a substrate. This kinase is called the p48 SIP kinase (for SA-Induced Protein kinase). Biologically active analogs of SA, which induce pathogenesis-related genes and enhanced resistance, also activated this kinase, whereas inactive analogs did not. Phosphorylation of a tyrosine residue(s) in the SIP kinase was associated with its activation. The SIP kinase was purified to homogeneity from SA-treated tobacco suspension culture cells. The purified SIP kinase is strongly phosphorylated on a tyrosine residue(s), and treatment with either protein tyrosine or serine/threonine phosphatases abolished its activity. Using primers corresponding to the sequences of internal tryptic peptides, we cloned the SIP kinase gene. Analysis of the SIP kinase sequence indicates that it belongs to the MAP kinase family and that it is distinct from the other plant MAP kinases previously implicated in stress responses, suggesting that different members of the MAP kinase family are activated by different stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号