首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Stone JE  Petes TD 《Genetics》2006,173(3):1223-1239
DNA mismatches are generated when heteroduplexes formed during recombination involve DNA strands that are not completely complementary. We used tetrad analysis in Saccharomyces cerevisiae to examine the meiotic repair of a base-base mismatch and a four-base loop in a wild-type strain and in strains with mutations in genes implicated in DNA mismatch repair. Efficient repair of the base-base mismatch required Msh2p, Msh6p, Mlh1p, and Pms1p, but not Msh3p, Msh4p, Msh5p, Mlh2p, Mlh3p, Exo1p, Rad1p, Rad27p, or the DNA proofreading exonuclease of DNA polymerase delta. Efficient repair of the four-base loop required Msh2p, Msh3p, Mlh1p, and Pms1p, but not Msh4p, Msh5p, Msh6p, Mlh2p, Mlh3p, Exo1p, Rad1p, Rad27p, or the proofreading exonuclease of DNA polymerase delta. We find evidence that a novel Mlh1p-independent complex competes with an Mlhp-dependent complex for the repair of a four-base loop; repair of the four-base loop was affected by loss of the Mlh3p, and the repair defect of the mlh1 and pms1 strains was significantly smaller than that observed in the msh2 strain. We also found that the frequency and position of local double-strand DNA breaks affect the ratio of mismatch repair events that lead to gene conversion vs. restoration of Mendelian segregation.  相似文献   

2.
Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR.  相似文献   

3.
We have used a novel method to activate the DNA damage S-phase checkpoint response in Saccharomyces cerevisiae to slow lagging-strand DNA replication by exposing cells expressing a drug-sensitive DNA polymerase δ (L612M-DNA pol δ) to the inhibitory drug phosphonoacetic acid (PAA). PAA-treated pol3-L612M cells arrest as large-budded cells with a single nucleus in the bud neck. This arrest requires all of the components of the S-phase DNA damage checkpoint: Mec1, Rad9, the DNA damage clamp Ddc1-Rad17-Mec3, and the Rad24-dependent clamp loader, but does not depend on Mrc1, which acts as the signaling adapter for the replication checkpoint. In addition to the above components, a fully functional mismatch repair system, including Exo1, is required to activate the S-phase damage checkpoint and for cells to survive drug exposure. We propose that mismatch repair activity produces persisting single-stranded DNA gaps in PAA-treated pol3-L612M cells that are required to increase DNA damage above the threshold needed for checkpoint activation. Our studies have important implications for understanding how cells avoid inappropriate checkpoint activation because of normal discontinuities in lagging-strand replication and identify a role for mismatch repair in checkpoint activation that is needed to maintain genome integrity.  相似文献   

4.
Meiotic recombination in Saccharomyces cerevisiae involves the formation of heteroduplexes, duplexes containing DNA strands derived from two different homologues. If the two strands of DNA differ by an insertion or deletion, the heteroduplex will contain an unpaired DNA loop. We found that unpaired loops as large as 5.6 kb can be accommodated within a heteroduplex. Repair of these loops involved the nucleotide excision repair (NER) enzymes Rad1p and Rad10p and the mismatch repair (MMR) proteins Msh2p and Msh3p, but not several other NER (Rad2p and Rad14p) and MMR (Msh4p, Msh6p, Mlh1p, Pms1p, Mlh2p, Mlh3p) proteins. Heteroduplexes were also formed with DNA strands derived from alleles containing two different large insertions, creating a large "bubble"; repair of this substrate was dependent on Rad1p. Although meiotic recombination events in yeast are initiated by double-strand DNA breaks (DSBs), we showed that DSBs occurring within heterozygous insertions do not stimulate interhomologue recombination.  相似文献   

5.
In Saccharomyces cerevisiae, the essential mismatch repair (MMR) endonuclease Mlh1-Pms1 forms foci promoted by Msh2-Msh6 or Msh2-Msh3 in response to mispaired bases. Here we analyzed the Mlh1-Mlh2 complex, whose role in MMR has been unclear. Mlh1-Mlh2 formed foci that often colocalized with and had a longer lifetime than Mlh1-Pms1 foci. Mlh1-Mlh2 foci were similar to Mlh1-Pms1 foci: they required mispair recognition by Msh2-Msh6, increased in response to increased mispairs or downstream defects in MMR, and formed after induction of DNA damage by phleomycin but not double-stranded breaks by I-SceI. Mlh1-Mlh2 could be recruited to mispair-containing DNA in vitro by either Msh2-Msh6 or Msh2-Msh3. Deletion of MLH2 caused a synergistic increase in mutation rate in combination with deletion of MSH6 or reduced expression of Pms1. Phylogenetic analysis demonstrated that the S. cerevisiae Mlh2 protein and the mammalian PMS1 protein are homologs. These results support a hypothesis that Mlh1-Mlh2 is a non-essential accessory factor that acts to enhance the activity of Mlh1-Pms1.  相似文献   

6.
Exo1 belongs to the Rad2 family of structure-specific nucleases and possesses 5′–3′ exonuclease activity on double-stranded DNA substrates. Exo1 interacts physically with the DNA mismatch repair (MMR) proteins Msh2 and Mlh1 and is involved in the excision of the mispaired nucleotide. Independent of its role in MMR, Exo1 contributes to long-range resection of DNA double-strand break (DSB) ends to facilitate their repair by homologous recombination (HR), and was recently identified as a component of error-free DNA damage tolerance pathways. Here, we show that Exo1 activity increases the hydroxyurea sensitivity of cells lacking Pol32, a subunit of DNA polymerases δ and ζ. Both, phospho-mimicking and dephospho-mimicking exo1 mutants act as hypermorphs, as evidenced by an increase in HU sensitivity of pol32Δ cells, suggesting that they are trapped in an active form and that phosphorylation of Exo1 at residues S372, S567, S587, S692 is necessary, but insufficient, for the accurate regulation of Exo1 activity at stalled replication forks. In contrast, neither phosphorylation status is important for Exo1's role in MMR or in the suppression of genome instability in cells lacking Sgs1 helicase. This ability of an EXO1 deletion to suppress the HU hypersensitivity of pol32Δ cells is in contrast to the negative genetic interaction between deletions of EXO1 and POL32 in MMS-treated cells as well as the role of EXO1 in DNA-damage treated rad53 and mec1 mutants.  相似文献   

7.
Hombauer H  Campbell CS  Smith CE  Desai A  Kolodner RD 《Cell》2011,147(5):1040-1053
DNA mismatch repair (MMR) increases replication fidelity by eliminating mispaired bases resulting from replication errors. In Saccharomyces cerevisiae, mispairs are primarily detected by the Msh2-Msh6 complex and corrected following recruitment of the Mlh1-Pms1 complex. Here, we visualized functional fluorescent versions of Msh2-Msh6 and Mlh1-Pms1 in living cells. We found that the Msh2-Msh6 complex is an S phase component of replication centers independent of mispaired bases; this localized pool accounted for 10%-15% of MMR in wild-type cells but was essential for MMR in the absence of Exo1. Unexpectedly, Mlh1-Pms1 formed nuclear foci that, although dependent on Msh2-Msh6 for formation, rarely colocalized with Msh2-Msh6 replication-associated foci. Mlh1-Pms1 foci increased when the number of mispaired bases was increased; in contrast, Msh2-Msh6 foci were unaffected. These findings suggest the presence of replication machinery-coupled and -independent pathways for mispair recognition by Msh2-Msh6, which direct formation of superstoichiometric Mlh1-Pms1 foci that represent sites of active MMR.  相似文献   

8.
DNA mismatch repair (MMR) models have proposed that MSH (MutS homolog) proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH (MutL homolog) proteins (primarily Mlh1-Pms1 in baker's yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20-30nm) unstructured arms that connect two terminal globular domains. These arms can vary between 100 and 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker's yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR.  相似文献   

9.
The Saccharomyces cerevisiae EXO1 gene encodes a 5′ exonuclease that participates in mismatch repair (MMR) of DNA replication errors. Deleting EXO1 was previously shown to increase mutation rates to a greater extent when combined with a mutator variant (pol3-L612M) of the lagging strand replicase, DNA polymerase δ (Pol δ), than when combined with a mutator variant (pol2-M644G) of the leading strand replicase, DNA polymerase ? (Pol ?). Here we confirm that result, and extend the approach to examine the effect of deleting EXO1 in a mutator variant (pol1-L868M) of Pol α, the proofreading-deficient and least accurate of the three nuclear replicases that is responsible for initiating Okazaki fragment synthesis. We find that deleting EXO1 increases the mutation rate in the Pol α mutator strain to a significantly greater extent than in the Pol δ or Pol ? mutator strains, thereby preferentially reducing the efficiency of MMR of replication errors generated by Pol α. Because these mismatches are closer to the 5′ ends of Okazaki fragments than are mismatches made by Pol δ or Pol ?, the results not only support the previous suggestion that Exo1 preferentially excises lagging strand replication errors during mismatch repair, they further imply that the 5′ ends serve as entry points for 5′ excision of replication errors made by Pol α, and possibly as strand discrimination signals for MMR. Nonetheless, mutation rates in the Pol α mutator strain are 5- to 25-fold lower in an exo1Δ strain as compared to an msh2Δ strain completely lacking MMR, indicating that in the absence of Exo1, most replication errors made by Pol α can still be removed in an Msh2-dependent manner by other nucleases and/or by strand displacement.  相似文献   

10.
The mismatch repair (MMR) protein Msh2 has been shown to function in the apoptotic response to alkylating agents in vivo. Here, we extend these studies to the MutL homologues (MLH) Mlh1 and Pms2 by analysing the apoptotic response within the small intestine of gene targeted strains. We demonstrate significant differences between Msh2, Mlh1 and Pms2 mutations in influencing apoptotic signalling following 50mg/kg N-methyl-nitrosourea (NMNU), with no obvious reliance upon either Mlh1 or Pms2. However, following exposure to 100mg/kg temozolomide or lower levels of NMNU (10mg/kg) both Mlh1- and Pms2-dependent apoptosis was observed, indicating that the apoptotic response at these levels of DNA damage is dependent on the MutL homologues. Given our ability to observe a MutLalpha dependence of the apoptotic response, we tested whether perturbations of this response directly translate into increases in mutation frequency in vivo. We show that treatment with temozolomide or 10mg/kg NMNU significantly increases mutation in both the Mlh1 and Pms2 mutant mice. At higher levels of NMNU, where the apoptotic response is independent of Mlh1 and Pms2, no gene dependent increase in mutation frequency was observed. These results argue that the MutSalpha and MutLalpha are not equally important in their ability to signal apoptosis. However, when MMR does mediate apoptosis, perturbation of this response leads to long-term persistence of mutant cells in vivo.  相似文献   

11.
Mammalian MutL homologues function in DNA mismatch repair (MMR) after replication errors and in meiotic recombination. Both functions are initiated by a heterodimer of MutS homologues specific to either MMR (MSH2-MSH3 or MSH2-MSH6) or crossing over (MSH4-MSH5). Mutations of three of the four MutL homologues (Mlh1, Mlh3, and Pms2) result in meiotic defects. We show herein that two distinct complexes involving MLH3 are formed during murine meiosis. The first is a stable association between MLH3 and MLH1 and is involved in promoting crossing over in conjunction with MSH4-MSH5. The second complex involves MLH3 together with MSH2-MSH3 and localizes to repetitive sequences at centromeres and the Y chromosome. This complex is up-regulated in Pms2-/- males, but not females, providing an explanation for the sexual dimorphism seen in Pms2-/- mice. The association of MLH3 with repetitive DNA sequences is coincident with MSH2-MSH3 and is decreased in Msh2-/- and Msh3-/- mice, suggesting a novel role for the MMR family in the maintenance of repeat unit integrity during mammalian meiosis.  相似文献   

12.
The Saccharomyces cerevisiae homologs of the bacterial mismatch repair proteins MutS and MutL correct replication errors and prevent recombination between homeologous (nonidentical) sequences. Previously, we demonstrated that Msh2p, Msh3p, and Pms1p regulate recombination between 91% identical inverted repeats, and here use the same substrates to show that Mlh1p and Msh6p have important antirecombination roles. In addition, substrates containing defined types of mismatches (base-base mismatches; 1-, 4-, or 12-nt insertion/deletion loops; or 18-nt palindromes) were used to examine recognition of these mismatches in mitotic recombination intermediates. Msh2p was required for recognition of all types of mismatches, whereas Msh6p recognized only base-base mismatches and 1-nt insertion/deletion loops. Msh3p was involved in recognition of the palindrome and all loops, but also had an unexpected antirecombination role when the potential heteroduplex contained only base-base mismatches. In contrast to their similar antimutator roles, Pms1p consistently inhibited recombination to a lesser degree than did Msh2p. In addition to the yeast MutS and MutL homologs, the exonuclease Exo1p and the nucleotide excision repair proteins Rad1p and Rad10p were found to have roles in inhibiting recombination between mismatched substrates.  相似文献   

13.
DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair   总被引:3,自引:2,他引:1  
The yeast Mlh1–Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N-terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N-terminal domains (NTDs) independently bind to double-stranded and single-stranded DNA, in the absence of dimerization and with different affinities. Full-length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full-length Mlh1 and the Mlh1–Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C-terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.  相似文献   

14.
The DNA mismatch repair (MMR) factor Mlh1–Pms1 contains long intrinsically disordered regions (IDRs) whose exact functions remain elusive. We performed cross-linking mass spectrometry to identify interactions within Mlh1–Pms1 and used this information to insert FRB and FKBP dimerization domains into their IDRs. Baker''s yeast strains bearing these constructs were grown with rapamycin to induce dimerization. A strain containing FRB and FKBP domains in the Mlh1 IDR displayed a complete defect in MMR when grown with rapamycin. but removing rapamycin restored MMR functions. Strains in which FRB was inserted into the IDR of one MLH subunit and FKBP into the other subunit were also MMR defective. The MLH complex containing FRB and FKBP domains in the Mlh1 IDR displayed a rapamycin-dependent defect in Mlh1–Pms1 endonuclease activity. In contrast, linking the Mlh1 and Pms1 IDRs through FRB-FKBP dimerization inappropriately activated Mlh1–Pms1 endonuclease activity. We conclude that dynamic and coordinated rearrangements of the MLH IDRs both positively and negatively regulate how the MLH complex acts in MMR. The application of the FRB-FKBP dimerization system to interrogate in vivo functions of a critical repair complex will be useful for probing IDRs in diverse enzymes and to probe transient loss of MMR on demand.  相似文献   

15.
Goldfarb T  Alani E 《Genetics》2005,169(2):563-574
The Saccharomyces cerevisiae mismatch repair (MMR) protein MSH6 and the SGS1 helicase were recently shown to play similarly important roles in preventing recombination between divergent DNA sequences in a single-strand annealing (SSA) assay. In contrast, MMR factors such as Mlh1p, Pms1p, and Exo1p were shown to not be required or to play only minimal roles. In this study we tested mutations that disrupt Sgs1p helicase activity, Msh2p-Msh6p mismatch recognition, and ATP binding and hydrolysis activities for their effect on preventing recombination between divergent DNA sequences (heteroduplex rejection) during SSA. The results support a model in which the Msh proteins act with Sgs1p to unwind DNA recombination intermediates containing mismatches. Importantly, msh2 mutants that displayed separation-of-function phenotypes with respect to nonhomologous tail removal during SSA and heteroduplex rejection were characterized. These studies suggest that nonhomologous tail removal is a separate function of Msh proteins that is likely to involve a distinct DNA binding activity. The involvement of Sgs1p in heteroduplex rejection but not nonhomologous tail removal further illustrates that subsets of MMR proteins collaborate with factors in different DNA repair pathways to maintain genome stability.  相似文献   

16.
DNA polymerase delta (pol delta) is a high fidelity eukaryotic enzyme that participates in DNA repair and is essential for DNA replication. Toward the goal of dissecting its multiple biological functions, here we describe the biochemical properties of Saccharomyces cerevisiae pol delta with a methionine replacing conserved leucine 612 at the polymerase active site. Compared with wild type pol delta, L612M pol delta has normal processivity and slightly higher polymerase specific activity. L612M pol delta also has normal 3' exonuclease activity, yet it is impaired in partitioning mismatches to the exonuclease active site, thereby reducing DNA synthesis fidelity. Error rates in vitro for L612M pol delta are elevated for both base substitutions and single base deletions but in a highly biased manner. For each of the six possible pairs of reciprocal mismatches that could arise during replication of complementary DNA strands to account for any particular base substitution in vivo (e.g. T-dGMP or A-dCMP for T to C transitions), L612M pol delta error rates are substantially higher for one mismatch than the other. These results provide a biochemical explanation for our observation, which confirms earlier genetic studies, that a haploid pol3-L612M S. cerevisiae strain has an elevated spontaneous mutation rate that is likely due to reduced replication fidelity in vivo.  相似文献   

17.
Okazaki fragment maturation to produce continuous lagging strands in eukaryotic cells requires precise coordination of strand displacement synthesis by DNA polymerase delta (Pol delta) with 5.-flap cutting by FEN1(RAD27) endonuclease. Excessive strand displacement is normally prevented by the 3.-exonuclease activity of Pol delta. This core maturation machinery can be assisted by Dna2 nuclease/helicase that processes long flaps. Our genetic studies show that deletion of the POL32 (third subunit of Pol delta) or PIF1 helicase genes can suppress lethality or growth defects of rad27Delta pol3-D520V mutants (defective for FEN1(RAD27) and the 3.-exonuclease of Pol delta) that produce long flaps and of dna2Delta mutants that are defective in cutting long flaps. On the contrary, pol32Delta or pif1Delta caused lethality of rad27Delta exo1Delta double mutants, suggesting that Pol32 and Pif1 are required to generate longer flaps that can be processed by Dna2 in the absence of the short flap processing activities of FEN1(RAD27) and Exo1. The genetic analysis reveals a remarkable flexibility of the Okazaki maturation machinery and is in accord with our biochemical analysis. In vitro, the generation of short flaps by Pol delta is not affected by the presence of Pol32; however, longer flaps only accumulate when Pol32 is present. The presence of FEN1(RAD27) during strand displacement synthesis curtails displacement in favor of flap cutting, thus suggesting an active hand-off mechanism from Pol delta to FEN1(RAD27). Finally, RNA-DNA hybrids are more readily displaced by Pol delta than DNA hybrids, thereby favoring degradation of initiator RNA during Okazaki maturation.  相似文献   

18.
The mismatch repair (MMR) family complexes Msh4-Msh5 and Mlh1-Mlh3 act with Exo1 and Sgs1-Top3-Rmi1 in a meiotic double strand break repair pathway that results in the asymmetric cleavage of double Holliday junctions (dHJ) to form crossovers. This review discusses how meiotic roles for Msh4-Msh5 and Mlh1-Mlh3 do not fit paradigms established for post-replicative MMR. We also outline models used to explain how these factors promote the formation of meiotic crossovers required for the accurate segregation of chromosome homologs during the Meiosis I division.  相似文献   

19.
20.
Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号