首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuropeptide W (NPW) was recently discovered as the endogenous ligand for GPR7 and GPR8, which are orphan G protein-coupled receptors isolated from the porcine brain. These receptors are assumed to be involved in feeding regulation and/or energy homeostasis. Recent anatomical studies have revealed that high levels of GPR7 mRNA are distributed in the brain, including the hypothalamus and amygdala. However immunohistochemical studies on the distribution and localization of NPW have revealed differing results concerning whether or not NPW-containing cell bodies and their processes are present in the hypothalamus. Only a few immunohistochemical reports have been published concerning the presence of NPW-containing neurons in the brains of rodents, while there have been no anatomical studies of the co-localization of this neuropeptide with other transmitters. On this basis, we used a specific antiserum against NPW to determine immunohistochemically the presence of NPW-containing neurons in the rat hypothalamus. Many NPW-like immunoreactive cell bodies and their processes could be detected in the caudal region of the lateral hypothalamus but not in its anterior or middle regions. Given this positive identification of NPW-containing neurons in the lateral hypothalamus, we further studied the nature of interaction between NPW-containing neurons and neurons containing feeding regulating peptides such as orexin- and melanin-concentrating hormone (MCH). Very close interactions between NPW-containing nerve processes and orexin- and MCH-containing neuronal cell bodies and processes could be observed. These morphological findings strongly suggest that NPW is involved in the regulation of feeding and/or sleep/arousal behavior through orexin- and/or MCH-mediated neuronal pathways.  相似文献   

2.
Intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits food intake in goldfish, unlike in rodents, suggesting that its anorexigenic action is mediated by alpha-melanocyte-stimulating hormone (alpha-MSH) but not corticotropin-releasing hormone. This led us to investigate whether MCH-containing neurons in the goldfish brain have direct inputs to alpha-MSH-containing neurons, using a confocal laser scanning microscope, and to examine whether the anorexigenic action of MCH is also mediated by other anorexigenic neuropeptides, such as cholecystokinin (CCK) and pituitary adenylate cyclase-activating polypeptide (PACAP), using their receptor antagonists. MCH- and alpha-MSH-like immunoreactivities were distributed throughout the brain, especially in the diencephalon. MCH-containing nerve fibers or endings lay in close apposition to alpha-MSH-containing neurons in the hypothalamus in the posterior part of the nucleus lateralis tuberis (NLTp). The inhibitory effect of ICV-injected MCH on food intake was not affected by treatment with a CCK A/CCK B receptor antagonist, proglumide, or a PACAP receptor (PAC(1) receptor) antagonist, PACAP((6-38)). ICV administration of MCH at a dose sufficient to inhibit food consumption also did not influence expression of the mRNAs encoding CCK and PACAP. These results strongly suggest that MCH-containing neurons provide direct input to alpha-MSH-containing neurons in the NLTp of goldfish, and that MCH plays a crucial role in the regulation of feeding behavior as an anorexigenic neuropeptide via the alpha-MSH (melanocortin 4 receptor)-signaling pathway.  相似文献   

3.
We showed earlier that a specific neuron population of the rat lateral hypothalamus, differing from the codistributed melanin-concentrating hormone (MCH) neurons, express both dynorphin (DYN) and secretogranin II (SgII) genes. We demonstrated later that this population corresponds in fact to the newly identified orexin/hypocretin (OX/Hcrt) neurons. In the present study, by revisiting the chemical phenotype of these neurons, we confirm that all of them contain DYN B- and SgII-immunoreactive materials. The roles played by these peptide/protein in OX/Hcrt neurons are still unclear.Double immunocytochemical stainings highlight putative somasomatic, axosomatic and axodendritic contacts between OX/Hcrt and MCH neurons. Adding OX/Hcrt to the culture medium of hypothalamic slices from 8-day-old rats results either in a significant increase of MCH mRNA after 24 h survival or a strong fall after 10 days culture. These results taken together suggest that OX/Hcrt can directly and/or indirectly affect MCH expression, and that both OX/Hcrt and MCH neuron populations interact to respond in a coordinated manner to central and peripheral signals.  相似文献   

4.
Intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits food intake in goldfish, unlike the orexigenic action in rodents, via the melanocortin system with suppression of neuropeptide Y (NPY) mRNA expression. We therefore investigated the neuronal relationship between MCH- and NPY-containing neurons in the goldfish brain, using a double-immunofluorescence method and confocal laser scanning microscopy. MCH- and NPY-like immunoreactivities were distributed throughout the brain. In particular, MCH-containing nerve fibers or endings lay in close apposition to NPY-containing neurons in a specific region of the hypothalamus, the nucleus posterioris periventricularis (NPPv). These observations suggest that MCH-containing neurons provide direct input to NPY-containing neurons in the NPPv of goldfish, and that MCH plays a crucial role in the regulation of feeding behavior as an anorexigenic neuropeptide, inhibiting the orexigenic activity of NPY.  相似文献   

5.
Summary A recently discovered member of the neuronal oscillator underlying swimming movements in the medicinal leech,Hirudo medicinalis, is described. This interneuron, named cell 60, exhibits membrane potential oscillations that are phase-locked to the swim oscillations observed in other oscillator neurons (phase angle, approximately 220°) and, when depolarized, acts to shift the phase of the swim oscillations. The soma of cell 60 lies near the posterior-lateral margin on the ventral aspect of most (and possibly all) segmental ganglia. The neurite crosses the midline, then turns anteriorly and projects into the lateral intersegmental connective. Cell 60 is connected to cell 28, a previously described dorsal swim oscillator neuron, via an electrically rectifying junction.Two interactions link cell 60 with cell 208, a swim oscillator neuron found on the ventral aspect of segmental ganglia: a short-latency, fatiguing inhibitory synapse and a powerful electrical interaction. The electrical interaction acts as a diode, in that current can pass from cell 60 to cell 208, but not in the reverse direction. The coupling coefficient in the forward direction is about 0.5 and is independent of the membrane potential difference between cells 60 and 208 provided that the diode connection is forward biased.The rectifying junction acts as a switch which is off during swimming activity because cell 208 oscillations are superimposed on a tonic depolarization of about 10–15 mV. This tonic potential reverse biases the electrical diode connection between cell 60 and cell 208, leaving the inhibitory synapse as the only effective interaction between these cells. The diode switch is on when cell 208 is hyperpolarized. In this circumstance, the dominant connection is electrical; therefore induced potential oscillations in cell 60 induce in-phase oscillations in cell 208.Abbreviations PIR Postinhibitory rebound - NM Neuromime  相似文献   

6.
We examined orexin-like immunoreactivity in the pituitary of the red-bellied piranha (Pygocentrus nattereri). Orexin-B-immunoreactive (IR) cells corresponded to luteinizing hormone (LH)-containing cells in the pars distalis, and orexin-B-IR fibers corresponded to melanin-concentrating hormone (MCH)-containing fibers in the pars nervosa. In the pars distalis, orexin-B-IR puncta that were also immunoreactive for MCH were observed around the orexin-B-IR cells. In the ventral hypothalamus, orexin-B-IR and MCH-IR neurons were found in the nucleus lateralis tuberis. Immunoelectron-microscopic analysis revealed that the orexin-B-like substance co-localized with LH in secretory granules and with MCH in MCH-containing neurons. Some of the MCH secreted in the pituitary might participate in the modulation of LH secretion from the gonadotrophs, together with orexin-B, leading to food intake by the stimulation of growth hormone secretion from the somatotrophs.  相似文献   

7.
Changing interactions between astrocytes and neurons during CNS maturation   总被引:2,自引:0,他引:2  
The environments of the developing brain and injured adult brain differ in their abilities to support axonal growth. To determine if astrocytes contribute to this difference, neurons were plated onto astrocytes cultured from the neonatal rat cortex and from the injured adult brain. Two patterns of neurite growth were observed in these two astrocyte culture systems. Neurons contacting the neonatal astrocytes had neurites that were twice as long as those contacting the injured adult astrocytes. Furthermore, in cultures with neonatal astrocytes, neurites faithfully followed the astrocytic processes, maximizing their contact, while in cultures of injured adult astrocytes, the neurites had a tendency to cross the processes orthogonally, minimizing their interaction with the astrocytes. When neurons were grown suspended over either neonatal or injured adult astrocytes, no difference in neurite length or the pattern of neurite growth was observed, indicating that neurite growth was not differentially affected by soluble factors released from the two populations of astrocytes. The addition of fetal calf serum, which is known to contain protease inhibitors, did not alter neurite growth when compared to serum-free medium, suggesting that a substantial difference in protease activity does not account for the variations in neurite length observed. Based on these results, it appears that the molecular components of the external surface of injured adult astrocytes do not support neurite growth to the same extent as those found on neonatal astrocytes. The differing abilities of these two populations of cultured astrocytes to support neurite growth in culture may reflect a change in the functional role of these cells that occurs during the development of the central nervous system.  相似文献   

8.
Axon growth during development and after injury has processes in common, but also differs in that regeneration requires the participation of cells of the immune system. To investigate how neuron-immunocyte interactions might influence regeneration, we developed an in vitro model whereby neurons and hemocytes from Aplysia californica were cocultured. The hemocytes, which behave like vertebrate macrophages, migrated randomly throughout the dish. When a neuron was encountered, some hemocytes exhibited an avoidance response, whereas others formed stable contacts. Hemocytes did not distinguish between neurons from different animals. Stable contacts occurred on neurites and growth cones, but not the cell soma, and were benign in that the hemocytes did not impede neurite growth. When hemocytes attached to the cell body, it presaged the destruction of the neuron. Destruction was a dynamic process that was initiated when groups of one to three hemocytes adhered to various regions of the cell soma. Each group was then joined by other hemocytes. They did not contact the neuron, but interconnected the initial groups, forming a network around the neuron. The network then contracted to dismember the cell. Once a neuron was destroyed, hemocytes removed the debris by phagocytosis. Both damaged neurons and those without apparent damage were targets for destruction. Severing neurites with a needle resulted in the destruction of only one of six cells. Our studies suggest that hemocytes, and by extrapolation, vertebrate macrophages, exhibit highly complex interactions with neurons that can exert a variety of influences on the course of nerve regeneration.  相似文献   

9.
In the African cichlid fish, Haplochromis burtoni, males are either territorial or nonterritorial. Territorial males suppress reproductive function in the nonterritorial males, and have larger gonads and larger gonadotropin-releasing hormone- (GnRH) containing neurons in the preoptic area (POA). We describe an experiment designed to establish the causal relationship between large GnRH neurons and large testes in these males by determining the feedback effects of gonadal sex steroids on the GnRH neurons. Territorial males were either castrated or sham-operated, 4 weeks after which they were sacrificed. Circulating steroid levels were measured, and the GnRH-containing neurons were visualized by staining sagittal sections of the brains with an antibody to salmon GnRH. The soma areas of antibody-stained neurons were measured with a computer-aided imaging system. Completely castrated males had markedly reduced levels of circulating sex steroids [11-ketotestosterone (11 KT) and testosterone (T)], as well as 17β-estradiol (E2). POA GnRH neurons in castrates showed a significant increase in mean soma size relative to the intact territorial males. Hence, in mature animals, gonadal steroids act as a brake on the growth of GnRH-containing neurons, and gonadal products are not responsible for the large GnRH neurons characteristic of territorial males. © 1992 John Wiley & Sons, Inc.  相似文献   

10.
Several anecdotal reports indicate that walruses (Odobenus rosmarus) occasionally attack seabirds, which potentially impacts local bird populations. However, the manner in which walruses interact with seabirds and the motivational basis of such interactions have not been investigated. Here, we describe and characterize the behaviour of wild Pacific walruses (O. r. divergens) directed at seabirds in water near the summer haulout in the Chukchi Sea. Although most walruses showed no interest in seabirds nearby, some individuals intentionally approached them both alone and in groups. A total of 74 seabird encounters for 71 individually identified walruses were registered. Behavioural analysis based on detailed observations, photography and video recording showed that the most common types of walrus behaviour toward a bird were approach by surfacing and splash, approach by surfacing and hit and attack from below. Immature individuals initiated 82% of encounters. The motivation to approach a bird was low in adult individuals, with the majority of encounters involving adults initiated by males. Walrus encounters with live birds showed a very low rate of bird kill. Encounters with dead birds were followed by further manipulations with bird carcasses, which included both the consumption of bird soft tissue and object play taking the form of drop–catch behaviour. In addition eight cases of the object-oriented play with a bird carcass in a group of walruses were observed. Object play in wild walruses is reported for the first time. Our results indicate that in seabird encounters, walruses display diverse behavioural patterns, not limited to predatory responses.  相似文献   

11.

Background  

Neuronal ceroid lipofuscinoses (NCLs) comprise at least eight genetically characterized neurodegenerative disorders of childhood. Despite of genetic heterogeneity, the high similarity of clinical symptoms and pathology of different NCL disorders suggest cooperation between different NCL proteins and common mechanisms of pathogenesis. Here, we have studied molecular interactions between NCL proteins, concentrating specifically on the interactions of CLN5, the protein underlying the Finnish variant late infantile form of NCL (vLINCLFin).  相似文献   

12.
13.
14.
Guthrie S 《Current biology : CB》2002,12(14):R488-R490
In the developing spinal cord, motor neurons become segregated into important functional units termed motor pools. Now it has been discovered that repertoires of cadherin surface molecules play key roles in motor pool sorting.  相似文献   

15.
The interactions of GABA- and glycine-mediated responses have been analyzed, the whole cell patch-clamp method being used. The response induced by co-application of glycine and GABA was a lesser one than the sum of responses induced by applying two transmitters separately. The molecular mechanisms underlying this effect have been determined. Due to applications of high concentrations of neurotransmitters it was revealed that GABA could activate glycine receptors in frog spinal motoneurons with relatively high efficiency (EC50 = 1.2 mM). The sequential application of neurotransmitters showed that even a single application of glycine could significantly boost the "run-down" of the GABA-mediated current, suggesting that there was a strong phosphorylation-dependent mechanism of GABAa-receptors inhibition. These mechanisms are likely to take place in frog spinal motoneurons when GABA and glycine are co-released from the same synaptic terminal.  相似文献   

16.
D B Pribor 《Cryobiology》1975,12(4):309-320
Human erythrocytes washed with phosphate buffered saline (PBS) were frozen for 1 or 16 min at temperatures ranging from ?10 to ?80 °C. Red cell suspensions contained either no protective agent or various concentrations of dimethylsulfoxide (DMSO) or glycerol. The similarities between cryoprotection by DMSO and glycerol reinforce Rapatz and Luyet's classification of cryoprotective agents into three types and support Mazur's two-factor theory of cryoprotection. However, there are important differences between the cryoprotective effects of DMSO and glycerol. The most noteworthy is that for all concentrations of DMSO a 16-min freezing exposure was equal to or more damaging than a 1-min exposure; the converse was true for 11.8 and 17.7% glycerol solutions. This and other differences suggest that the general mechanism of freeze-thaw damage and cryoprotection is more complex than described by Mazur's two-factor theory. Likewise cryoprotective agents cannot be consistently classified into two or three types. A multifactor theory was suggested as a more extensive model for understanding freeze-thaw damage and cryoprotection. The major new contribution of this theory is the idea of biological interaction. This latter refers to solutes in conjunction with various factors which disturb the steady state of the cell membrane. The change in the membrane may be reversible or irreversible depending upon the circumstances.  相似文献   

17.
18.
Epileptic events can be produced in in vitro brain slices after perfusion with convulsant agents such as penicillin or picrotoxin. These events consist of one or more synchronized neuronal bursts. In this experimental system, epileptic events occur because of blockade of synaptic inhibition by the convulsant agent. A sparse network of excitatory synaptic interconnections in the hippocampus serves to synchronize a population of neurons, each of which is capable of bursting after appropriate stimulation.  相似文献   

19.
The interactions of neurons with extracellular cues are important in directing the formation of precise neuronal networks during the development of the nervous system. This review will focus on recent progress towards the understanding of the molecular machinery involved in the interactions of neurons with the extracellular matrix.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号