共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the contribution of N-terminal region of eukaryotic initiation factor 4E (eIF4E) to the interaction with 4E-BP and to investigate the effect of 4E-BP phosphorylation on the interaction with eIF4E, the interaction profiles of the Ser65-unphosphorylated and phosphorylated peptides (Thr37-Thr70 fragment of 4E-BP1) with full-length and N-terminal 33 residues-deleted eIF4Es were investigated by fluorescence and SPR methods. The effect of N-terminal region of eIF4E on the interaction with 4E-BP1 peptides was shown to be dependent on the interaction state, that is, the steady-state fluorescence and kinetic-state SRP analyses showed the positive and negative contributions of the N-terminal region to the interaction with the peptide, respectively, despite its unphosphorylated or phosphorylated state. The comparison of the association constants of the peptide with those of full-length 4E-BP1 indicated the importance of N-terminal (1-36) and/or C-terminal (71-118) sequence of 4E-BP1 for the interaction, although the MD simulations suggested that the alpha-helical region (Arg56-Cys62) of 4E-BP1 peptide is sufficient for keeping the interaction. The MD simulations also indicated that a charge-dependent rigid hydration shell formed around the phosphate group makes the molecular conformation rigid, and single Ser65 phosphorylation is insufficient for releasing 4E-PB1 peptide from eIF4E. 相似文献
2.
Localisation and regulation of the eIF4E-binding protein 4E-BP3 总被引:3,自引:0,他引:3
The cap-binding protein eIF4E-binding protein 3 (4E-BP3) was identified some years ago, but its properties have not been investigated in detail. In this report, we investigated the regulation and localisation of 4E-BP3. We show that 4E-BP3 is present in the nucleus as well as in the cytoplasm in primary T cells, HEK293 cells and HeLa cells. 4E-BP3 was associated with eIF4E in both cell compartments. Furthermore, 4E-BP3/eIF4E association in the cytoplasm was regulated by serum or interleukin-2 starvation in the different cell types. Rapamycin did not affect the association of eIF4E with 4E-BP3 in the cytoplasm or in the nucleus. 相似文献
3.
Hinnebusch AG 《Molecular cell》2012,46(6):717-719
In this issue of Molecular Cell, Yanagiya et al. (2012) describe a regulatory mechanism that couples the abundance of the translational repressor 4E-BP1 with its target eIF4E via proteasomal degradation of 4E-BP1, thus maintaining translation in cells depleted of eIF4E. 相似文献
4.
Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1
下载免费PDF全文

Vesicular stomatitis virus (VSV) modulates protein synthesis in infected cells in a way that allows the translation of its own 5'-capped mRNA but inhibits the translation of host mRNA. Previous data have shown that inactivation of eIF2alpha is important for VSV-induced inhibition of host protein synthesis. We tested whether there is a role for eIF4F in this inhibition. The multisubunit eIF4F complex is involved in the regulation of protein synthesis via phosphorylation of cap-binding protein eIF4E, a subunit of eIF4F. Translation of host mRNA is significantly reduced under conditions in which eIF4E is dephosphorylated. To determine whether VSV infection alters the eIF4F complex, we analyzed eIF4E phosphorylation and the association of eIF4E with other translation initiation factors, such as eIF4G and the translation inhibitor 4E-BP1. VSV infection of HeLa cells resulted in the dephosphorylation of eIF4E at serine 209 between 3 and 6 h postinfection. This time course corresponded well to that of the inhibition of host protein synthesis induced by VSV infection. Cells infected with a VSV mutant that is delayed in the ability to inhibit host protein synthesis were also delayed in dephosphorylation of eIF4E. In addition to decreasing eIF4E phosphorylation, VSV infection also resulted in the dephosphorylation and activation of eIF4E-binding protein 4E-BP1 between 3 and 6 h postinfection. Analysis of cap-binding complexes showed that VSV infection reduced the association of eIF4E with the eIF4G scaffolding subunit at the same time as its association with 4E-BP1 increased and that these time courses correlated with the dephosphorylation of eIF4E. These changes in the eIF4F complex occurred over the same time period as the onset of viral protein synthesis, suggesting that activation of 4E-BP1 does not inhibit translation of viral mRNAs. In support of this idea, VSV protein synthesis was not affected by the presence of rapamycin, a drug that blocks 4E-BP1 phosphorylation. These data show that VSV infection results in modifications of the eIF4F complex that are correlated with the inhibition of host protein synthesis and that translation of VSV mRNAs occurs despite lowered concentrations of the active cap-binding eIF4F complex. This is the first noted modification of both eIF4E and 4E-BP1 phosphorylation levels among viruses that produce capped mRNA for protein translation. 相似文献
5.
6.
In nucleus, eIF4E regulates the nucleus export of specific mRNA. In this study, altered 4E-BP3 (eIF4E-binding protein 3) expression resulted in profoundly affected cyclin D1 protein levels, partially due to changes in the cytoplasmic cyclin D1 mRNA levels in both U2OS and MCF7 cells, whereas altered 4E-BP1 expression did not affect eIF4E-mediated cyclin D1 mRNA export. 4E-BP3 also affected a subset of growth promoting mRNAs exported in an eIF4-dependent manner. Furthermore, 4E-BP3 interacted with dephosphorylated RPA2 (replication protein A2). The results indicated 4E-BP3 acts as an inhibitor of eIF4E-mediated mRNA export in the examined cells, and 4E-BP3 inhibition of eIF4E-mediated mRNA export is regulated by the phosphorylation state of RPA2. 相似文献
7.
8.
Salaün P Pyronnet S Morales J Mulner-Lorillon O Bellé R Sonenberg N Cormier P 《Developmental biology》2003,255(2):428-439
The mRNA's cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation. 相似文献
9.
Activation of the tumour suppressor protein p53 rapidly inhibits protein synthesis. This is associated with dephosphorylation and cleavage of initiation factor eIF4GI and the eIF4E-binding protein 4E-BP1. When the activation of p53 is reversed within 16 h 4E-BP1 becomes rephosphorylated, the level of intact eIF4GI slowly increases and protein synthesis gradually recovers. The recovery of protein synthesis is partially blocked by rapamycin and wortmannin but not by the protein kinase inhibitors PD98059 and CGP74514A. Both rapamycin and wortmannin, but not PD98059 or CGP74514A, delay the reappearance of eIF4GI. In contrast, full-length 4E-BP1 rapidly becomes rephosphorylated and this process is partially inhibited by rapamycin, PD98059 and CGP74514A. Thus, activation of p53 results in the inhibition of distinct rapamycin- and wortmannin-sensitive pathways that target eIF4GI, and rapamycin-sensitive and -insensitive pathways that target 4E-BP1. Following inactivation of p53 the gradual recovery is determined largely by the kinetics of restoration of eIF4GI rather than by the rephosphorylation of full-length 4E-BP1. These findings suggest that the ability of cells to rephosphorylate 4E-BP1, resynthesise eIF4GI and restore the rate of protein synthesis after inactivation of p53 is an important aspect of recovery following the relief of physiological stress. 相似文献
10.
Cormier P Pyronnet S Morales J Mulner-Lorillon O Sonenberg N Bellé R 《Developmental biology》2001,232(2):275-283
The eukaryotic translation initiation factor (eIF) 4F facilitates the recruitment of ribosomes to the mRNA 5' end. The 4E-BPs are small proteins with hypophosphorylated forms that interact with the cap binding protein eIF4E, preventing its interaction with eIF4G, thereby preventing ribosome interaction with mRNA. In sea urchin, fertilization triggers a rapid rise in protein synthesis. Here, we demonstrate that a 4E-BP homologue exists and is associated with eIF4E in unfertilized eggs. We also show that 4E-BP/eIF4E association diminishes a few minutes following fertilization. This decrease is correlated with a decrease in the total amount of 4E-BP in combination with an increase in the phosphorylation of the protein. We propose that 4E-BP acts as a repressor of protein synthesis in unfertilized sea urchin eggs and that 4E-BP/eIF4E dissociation plays an important role in the rise in protein synthesis that occurs shortly following fertilization. 相似文献
11.
12.
The mitochondria play a pivotal role in regulating glucose-induced insulin secretion in the pancreatic beta cell. We have recently demonstrated that glutamate derived from mitochondria participates directly in the stimulation of insulin exocytosis. In the present study, mitochondria isolated from the beta cell line INS-1E generated glutamate when incubated with the tricarboxylic acid cycle intermediate succinate. The generation of glutamate correlated with stimulated mitochondrial activity monitored as oxygen consumption and was inhibited by the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Glutamate is formed by the mitochondrial enzyme glutamate dehydrogenase from alpha-ketoglutarate. Transient overexpression of glutamate dehydrogenase in INS-1E cells resulted in potentiation of glucose-stimulated hormone secretion without affecting basal release. These results further point to glutamate as an intracellular messenger playing a key role in the control of insulin exocytosis. 相似文献
13.
Modulation of interactions among proteins is an important mechanism for regulating both the subcellular location and the function of proteins. An example of the importance of protein-protein interaction is the reversible association of eukaryotic initiation factor eIF4E with the eIF4E binding proteins 4E-BP1 and eIF4G. When bound to 4E-BP1, eIF4E cannot bind to eIF4G to form the active eIF4F complex, an event that is required for the binding of mRNA to the ribosome. Thus, association of eIF4E with 4E-BP1 represses mRNA translation by preventing the binding of mRNA to the ribosome. Previous studies have measured the amount of 4E-BP1 or eIF4G bound to eIF4E by either affinity chromatography or immunoprecipitation of eIF4E followed by Western blot analysis for quantitation of 4E-BP1 and eIF4G. Both of these techniques have significant limitations. In the present study, we describe a microtiter plate-based assay for quantitation of the amount of 4E-BP1 and eIF4G bound to eIF4E that obviates many of the limitations of the earlier approaches. It also has the advantage that absolute amounts of the individual proteins can be easily estimated. The approach should be applicable to the study of a wide variety of protein-protein interactions. 相似文献
14.
Karim MM Hughes JM Warwicker J Scheper GC Proud CG McCarthy JE 《The Journal of biological chemistry》2001,276(23):20750-20757
Translation initiation is a key point of regulation in eukaryotic gene expression. 4E-binding proteins (4E-BPs) inhibit initiation by blocking the association of eIF4E with eIF4G, two integral components of the mRNA cap-binding complex. Phosphorylation of 4E-BP1 reduces its ability to bind to eIF4E and thereby to compete with eIF4G. A novel combination of biophysical and biochemical tools was used to measure the impact of phosphorylation and acidic side chain substitution at each potentially modulatory site in 4E-BP1. For each individual site, we have analyzed the effects of modification on eIF4E binding using affinity chromatography and surface plasmon resonance analysis, and on the regulatory function of the 4E-BP1 protein using a yeast in vivo model system and a mammalian in vitro translation assay. We find that modifications at the two sites immediately flanking the eIF4E-binding domain, Thr(46) and Ser(65), consistently have the most significant effects, and that phosphorylation of Ser(65) causes the greatest reduction in binding affinity. These results establish a quantitative framework that should contribute to understanding of the molecular interactions underlying 4E-BP1-mediated translational regulation. 相似文献
15.
Mar��a I. Ayuso Macarena Hern��ndez-Jim��nez Mar��a E. Mart��n Matilde Salinas Alberto Alc��zar 《The Journal of biological chemistry》2010,285(45):34355-34363
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis. 相似文献
16.
Tomek W Melo Sterza FA Kubelka M Wollenhaupt K Torner H Anger M Kanitz W 《Biology of reproduction》2002,66(5):1274-1282
Meiotic maturation of mammalian oocytes (transition from prophase I to metaphase II) is accompanied by complex changes in the protein phosphorylation pattern. At least two major protein kinases are involved in these events; namely, cdc2 kinase and mitogen-activated protein (MAP) kinase, because the inhibition of these kinases arrest mammalian oocytes in the germinal vesicle (GV) stage. We show that during meiotic maturation of bovine oocytes, the translation initiation factor, eIF4E (the cap binding protein), gradually becomes phosphorylated. This substantial phosphorylation begins at the time of germinal vesicle breakdown (GVBD) and continues to the metaphase II stage. The onset of eIF4E phosphorylation occurs in parallel with a significant increase in overall protein synthesis. However, although eIF4E is nearly fully phosphorylated in metaphase II oocytes, protein synthesis reaches only basal levels at this stage, similar to that of prophase I oocytes, in which the factor remains unphosphorylated. We present evidence that a specific repressor of eIF4E, the binding protein 4E-BP1, is present and could be involved in preventing eIF4E function in metaphase II stage oocytes. Recently, two protein kinases, called Mnk1 and Mnk2, have been identified in somatic cells as eIF4E kinases, both of which are substrates of MAP kinase in vivo. In bovine oocytes, a specific inhibitor of cdk kinases, butyrolactone I, arrests oocytes in GV stage and prevents activation of both cdc2 and MAP kinase. Under these conditions, the phosphorylation of eIF4E is also blocked, and its function in initiation of translation is impaired. In contrast, PD 098059, a specific inhibitor of the MAP kinase activation pathway, which inhibits the MAP kinase kinase, called MEK function, leads only to a postponed GVBD, and a delay in MAP kinase and eIF4E phosphorylation. These results indicate that in bovine oocytes, 1) MAP kinase activation is only partially dependent on MEK kinase, 2) MAP kinase is involved in eIF4E phosphorylation, and 3) the abundance of fully phosphorylated eIF4E does not necessarily directly stimulate protein synthesis. A possible MEK kinase-independent pathway of MAP kinase phosphorylation and the role of 4E-BP1 in repressing translation in metaphase II oocytes are discussed. 相似文献
17.
Rosettani P Knapp S Vismara MG Rusconi L Cameron AD 《Journal of molecular biology》2007,368(3):691-705
All eukaryotic cellular mRNAs contain a 5' m(7)GpppN cap. In addition to conferring stability to the mRNA, the cap is required for pre-mRNA splicing, nuclear export and translation by providing an anchor point for protein binding. In translation, the interaction between the cap and the eukaryotic initiation factor 4E (eIF4E) is important in the recruitment of the mRNAs to the ribosome. Human 4EHP (h4EHP) is a homologue of eIF4E. Like eIF4E it is able to bind the cap but it appears to play a different cellular role, possibly being involved in the fine-tuning of protein expression levels. Here we use X-ray crystallography and isothermal titration calorimetry (ITC) to investigate further the binding of cap analogues and peptides to h4EHP. m(7)GTP binds to 4EHP 200-fold more weakly than it does to eIF4E with the guanine base sandwiched by a tyrosine and a tryptophan instead of two tryptophan residues as seen in eIF4E. The tyrosine resides on a loop that is longer in h4EHP than in eIF4E. The consequent conformational difference between the proteins allows the tyrosine to mimic the six-membered ring of the tryptophan in eIF4E and adopt an orientation that is similar to that seen for equivalent residues in other non-homologous cap-binding proteins. In the absence of ligand the binding site is incompletely formed with one of the aromatic residues being disordered and the side-chain of the other adopting a novel conformation. A peptide derived from the eIF4E inhibitory protein, 4E-BP1 binds h4EHP 100-fold less strongly than eIF4E but in a similar manner. Overall the data, combined with sequence analyses of 4EHP from evolutionary diverse species, strongly support the hypothesis that 4EHP plays a physiological role utilizing both cap-binding and protein-binding functions but which is distinct from eIF4E. 相似文献
18.
19.
Structural basis for competitive inhibition of eIF4G-Mnk1 interaction by the adenovirus 100-kilodalton protein
下载免费PDF全文

Translation of most cellular mRNAs involves cap binding by the translation initiation complex. Among this complex of proteins are cap-binding protein eIF4E and the eIF4E kinase Mnk1. Cap-dependent mRNA translation generally correlates with Mnk1 phosphorylation of eIF4E when both are bound to eIF4G. During the late phase of adenovirus (Ad) infection translation of cellular mRNA is inhibited, which correlates with displacement of Mnk1 from eIF4G by the viral 100-kDa (100K) protein and dephosphorylation of eIF4E. Here we describe the molecular mechanism for 100K protein displacement of Mnk1 from eIF4G and elucidate a structural basis for eIF4G interaction with Mnk1 and 100K proteins and Ad inhibition of cellular protein synthesis. The eIF4G-binding site is located in an N-terminal 66-amino-acid peptide of 100K which is sufficient to bind eIF4G, displace Mnk1, block eIF4E phosphorylation, and inhibit eIF4F (cap)-dependent cellular mRNA translation. Ad 100K and Mnk1 proteins possess a common eIF4G-binding motif, but 100K protein binds more strongly to eIF4G than does Mnk1. Unlike Mnk1, for which binding to eIF4G is RNA dependent, competitive binding by 100K protein is RNA independent. These data support a model whereby 100K protein blocks cellular protein synthesis by coopting eIF4G and cap-initiation complexes regardless of their association with mRNA and displacing or blocking binding by Mnk1, which occurs only on preassembled complexes, resulting in dephosphorylation of eIF4E. 相似文献
20.
Charge distribution in 7-methylguanine regarding cation-pi interaction with protein factor eIF4E
下载免费PDF全文

Ruszczynska K Kamienska-Trela K Wojcik J Stepinski J Darzynkiewicz E Stolarski R 《Biophysical journal》2003,85(3):1450-1456
Electric charge distribution in mRNA 5' cap terminus has been exhaustively characterized in respect to the affinity for cap-binding proteins. Formation of the stacked configuration of positively charged 7-methylguanine in between two aromatic amino acid rings, known as sandwich cation-pi stacking, is thought to be prerequisite for the specific recognition of the cap by eukaryotic initiation factor eIF4E; i.e., discrimination between the cap and nucleotides without the methyl group at N(7). Nuclear magnetic resonance spectroscopy of (15)N/(13)C-double-labeled 7-methylguanosine 5'-triphosphate and 7-methylguanosine, as well as their unsubstituted counterparts, GTP and guanosine, yielded characteristic changes of the electron-mediated spin-spin couplings and chemical shifts due to the methylation at N(7). The experimentally measured changes of the nuclear magnetic resonance parameters have been analyzed in respect to the electric charge distribution calculated by means of quantum chemical methods, and interpreted in terms of new proposed positive charge localization in the 7-methylguanine five-member ring. 相似文献