首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the contribution of N-terminal region of eukaryotic initiation factor 4E (eIF4E) to the interaction with 4E-BP and to investigate the effect of 4E-BP phosphorylation on the interaction with eIF4E, the interaction profiles of the Ser65-unphosphorylated and phosphorylated peptides (Thr37-Thr70 fragment of 4E-BP1) with full-length and N-terminal 33 residues-deleted eIF4Es were investigated by fluorescence and SPR methods. The effect of N-terminal region of eIF4E on the interaction with 4E-BP1 peptides was shown to be dependent on the interaction state, that is, the steady-state fluorescence and kinetic-state SRP analyses showed the positive and negative contributions of the N-terminal region to the interaction with the peptide, respectively, despite its unphosphorylated or phosphorylated state. The comparison of the association constants of the peptide with those of full-length 4E-BP1 indicated the importance of N-terminal (1-36) and/or C-terminal (71-118) sequence of 4E-BP1 for the interaction, although the MD simulations suggested that the alpha-helical region (Arg56-Cys62) of 4E-BP1 peptide is sufficient for keeping the interaction. The MD simulations also indicated that a charge-dependent rigid hydration shell formed around the phosphate group makes the molecular conformation rigid, and single Ser65 phosphorylation is insufficient for releasing 4E-PB1 peptide from eIF4E.  相似文献   

2.
4E binding protein 1 (4E-BP1) inhibits translation by binding to the initiation factor eIF4E and is mostly or completely unstructured in both free and bound states. We wished to determine whether the free protein has local structure that could be involved in eIF4E binding. Assignments were obtained using double and triple resonance NMR methods. Residues 4-10, 43-46, and 56-65 could not be assigned, primarily because of a high degree of 1H and 15N chemical shift overlap. Steady-state ¿1H¿-15N NOEs were measured for 45 residues in the assigned regions. Except for the two C-terminal residues, the NOEs were between -0.77 and - 1.14, indicating a high level of flexibility. Furthermore, the ¿1H¿-15N NOE spectrum recorded with presaturation contained no strong positive signals, making it likely that no other residues have positive or smaller negative NOEs. This implies that 4E-BP1 has no regions of local order in the absence of eIF4E. The interaction therefore appears to be an induced fit to a completely disordered protein molecule.  相似文献   

3.
Localisation and regulation of the eIF4E-binding protein 4E-BP3   总被引:3,自引:0,他引:3  
The cap-binding protein eIF4E-binding protein 3 (4E-BP3) was identified some years ago, but its properties have not been investigated in detail. In this report, we investigated the regulation and localisation of 4E-BP3. We show that 4E-BP3 is present in the nucleus as well as in the cytoplasm in primary T cells, HEK293 cells and HeLa cells. 4E-BP3 was associated with eIF4E in both cell compartments. Furthermore, 4E-BP3/eIF4E association in the cytoplasm was regulated by serum or interleukin-2 starvation in the different cell types. Rapamycin did not affect the association of eIF4E with 4E-BP3 in the cytoplasm or in the nucleus.  相似文献   

4.
In this issue of Molecular Cell, Yanagiya et al. (2012) describe a regulatory mechanism that couples the abundance of the translational repressor 4E-BP1 with its target eIF4E via proteasomal degradation of 4E-BP1, thus maintaining translation in cells depleted of eIF4E.  相似文献   

5.
Background information. The translational inhibitor protein 4E‐BP1 [eIF4E (eukaryotic initiation factor 4E)‐binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5′ cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E‐BP1. Phosphorylation of 4E‐BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E‐BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. Results. We now report that activation of p53 also results in modification of 4E‐BP1 to a truncated form. Unlike full‐length 4E‐BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full‐length 4E‐BP1. Inhibitor studies indicate that the p53‐induced cleavage of 4E‐BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full‐length 4E‐BP1. Measurements of the turnover of 4E‐BP1 indicate that the truncated form is much more stable than the full‐length protein. Conclusions. The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E‐BP1, which may exert a long‐term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth‐inhibitory and pro‐apoptotic effects of p53.  相似文献   

6.
BACKGROUND INFORMATION: The translational inhibitor protein 4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5' cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E-BP1. Phosphorylation of 4E-BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E-BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. RESULTS: We now report that activation of p53 also results in modification of 4E-BP1 to a truncated form. Unlike full-length 4E-BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full-length 4E-BP1. Inhibitor studies indicate that the p53-induced cleavage of 4E-BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full-length 4E-BP1. Measurements of the turnover of 4E-BP1 indicate that the truncated form is much more stable than the full-length protein. CONCLUSIONS: The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E-BP1, which may exert a long-term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth-inhibitory and pro-apoptotic effects of p53.  相似文献   

7.
Connor JH  Lyles DS 《Journal of virology》2002,76(20):10177-10187
Vesicular stomatitis virus (VSV) modulates protein synthesis in infected cells in a way that allows the translation of its own 5'-capped mRNA but inhibits the translation of host mRNA. Previous data have shown that inactivation of eIF2alpha is important for VSV-induced inhibition of host protein synthesis. We tested whether there is a role for eIF4F in this inhibition. The multisubunit eIF4F complex is involved in the regulation of protein synthesis via phosphorylation of cap-binding protein eIF4E, a subunit of eIF4F. Translation of host mRNA is significantly reduced under conditions in which eIF4E is dephosphorylated. To determine whether VSV infection alters the eIF4F complex, we analyzed eIF4E phosphorylation and the association of eIF4E with other translation initiation factors, such as eIF4G and the translation inhibitor 4E-BP1. VSV infection of HeLa cells resulted in the dephosphorylation of eIF4E at serine 209 between 3 and 6 h postinfection. This time course corresponded well to that of the inhibition of host protein synthesis induced by VSV infection. Cells infected with a VSV mutant that is delayed in the ability to inhibit host protein synthesis were also delayed in dephosphorylation of eIF4E. In addition to decreasing eIF4E phosphorylation, VSV infection also resulted in the dephosphorylation and activation of eIF4E-binding protein 4E-BP1 between 3 and 6 h postinfection. Analysis of cap-binding complexes showed that VSV infection reduced the association of eIF4E with the eIF4G scaffolding subunit at the same time as its association with 4E-BP1 increased and that these time courses correlated with the dephosphorylation of eIF4E. These changes in the eIF4F complex occurred over the same time period as the onset of viral protein synthesis, suggesting that activation of 4E-BP1 does not inhibit translation of viral mRNAs. In support of this idea, VSV protein synthesis was not affected by the presence of rapamycin, a drug that blocks 4E-BP1 phosphorylation. These data show that VSV infection results in modifications of the eIF4F complex that are correlated with the inhibition of host protein synthesis and that translation of VSV mRNAs occurs despite lowered concentrations of the active cap-binding eIF4F complex. This is the first noted modification of both eIF4E and 4E-BP1 phosphorylation levels among viruses that produce capped mRNA for protein translation.  相似文献   

8.
9.
Chen CC  Lee JC  Chang MC 《FEBS letters》2012,586(16):2260-2266
In nucleus, eIF4E regulates the nucleus export of specific mRNA. In this study, altered 4E-BP3 (eIF4E-binding protein 3) expression resulted in profoundly affected cyclin D1 protein levels, partially due to changes in the cytoplasmic cyclin D1 mRNA levels in both U2OS and MCF7 cells, whereas altered 4E-BP1 expression did not affect eIF4E-mediated cyclin D1 mRNA export. 4E-BP3 also affected a subset of growth promoting mRNAs exported in an eIF4-dependent manner. Furthermore, 4E-BP3 interacted with dephosphorylated RPA2 (replication protein A2). The results indicated 4E-BP3 acts as an inhibitor of eIF4E-mediated mRNA export in the examined cells, and 4E-BP3 inhibition of eIF4E-mediated mRNA export is regulated by the phosphorylation state of RPA2.  相似文献   

10.
Mammalian hibernation involves cessation of energetically costly processes typical of homeostatic regulation including protein synthesis. To further elucidate the mechanisms employed in depressing translation, we surveyed key eukaryotic initiation factors [eIF2, eIF4B, eIF4E, eIF4GI and -II, and 4E-binding protein-1 (4E-BP1), -2, and -3] for their availability and phosphorylation status in the livers of golden-mantled ground squirrels (Spermophilus lateralis) across the hibernation cycle. Western blot analyses indicated only one significant locus for regulation of translational initiation in ground squirrel liver: control of eIF4E. We found seasonal variation in a potent regulator of eIF4E activity, 4E-BP1. Summer squirrels lack 4E-BP1 and apparently control eIF4E activity through direct phosphorylation. In winter, eIF4E is regulated through binding with 4E-BP1. During the euthermic periods that separate bouts of torpor (interbout arousal), 4E-BP1 is hyperphosphorylated to promote initiation. However, during torpor, 4E-BP1 is hypophosphorylated and cap-dependent initiation of translation is restricted. The regulation of cap-dependent initiation of translation may allow for the differential expression of proteins directed toward enhancing survivorship.  相似文献   

11.
12.
mRNA 5'-cap recognition by the eukaryotic translation initiation factor eIF4E has been exhaustively characterized with the aid of a novel fluorometric, time-synchronized titration method, and X-ray crystallography. The association constant values of recombinant eIF4E for 20 different cap analogues cover six orders of magnitude; with the highest affinity observed for m(7)GTP (approximately 1.1 x 10(8) M(-1)). The affinity of the cap analogues for eIF4E correlates with their ability to inhibit in vitro translation. The association constants yield contributions of non-covalent interactions involving single structural elements of the cap to the free energy of binding, giving a reliable starting point to rational drug design. The free energy of 7-methylguanine stacking and hydrogen bonding (-4.9 kcal/mol) is separate from the energies of phosphate chain interactions (-3.0, -1.9, -0.9 kcal/mol for alpha, beta, gamma phosphates, respectively), supporting two-step mechanism of the binding. The negatively charged phosphate groups of the cap act as a molecular anchor, enabling further formation of the intermolecular contacts within the cap-binding slot. Stabilization of the stacked Trp102/m(7)G/Trp56 configuration is a precondition to form three hydrogen bonds with Glu103 and Trp102. Electrostatically steered eIF4E-cap association is accompanied by additional hydration of the complex by approximately 65 water molecules, and by ionic equilibria shift. Temperature dependence reveals the enthalpy-driven and entropy-opposed character of the m(7)GTP-eIF4E binding, which results from dominant charge-related interactions (DeltaH degrees =-17.8 kcal/mol, DeltaS degrees= -23.6 cal/mol K). For recruitment of synthetic eIF4GI, eIF4GII, and 4E-BP1 peptides to eIF4E, all the association constants were approximately 10(7) M(-1), in decreasing order: eIF4GI>4E-BP1>eIF4GII approximately 4E-BP1(P-Ser65) approximately 4E-BP1(P-Ser65/Thr70). Phosphorylation of 4E-BP1 at Ser65 and Thr70 is insufficient to prevent binding to eIF4E. Enhancement of the eIF4E affinity for cap occurs after binding to eIF4G peptides.  相似文献   

13.
The mRNA's cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation.  相似文献   

14.
Activation of the tumour suppressor protein p53 rapidly inhibits protein synthesis. This is associated with dephosphorylation and cleavage of initiation factor eIF4GI and the eIF4E-binding protein 4E-BP1. When the activation of p53 is reversed within 16 h 4E-BP1 becomes rephosphorylated, the level of intact eIF4GI slowly increases and protein synthesis gradually recovers. The recovery of protein synthesis is partially blocked by rapamycin and wortmannin but not by the protein kinase inhibitors PD98059 and CGP74514A. Both rapamycin and wortmannin, but not PD98059 or CGP74514A, delay the reappearance of eIF4GI. In contrast, full-length 4E-BP1 rapidly becomes rephosphorylated and this process is partially inhibited by rapamycin, PD98059 and CGP74514A. Thus, activation of p53 results in the inhibition of distinct rapamycin- and wortmannin-sensitive pathways that target eIF4GI, and rapamycin-sensitive and -insensitive pathways that target 4E-BP1. Following inactivation of p53 the gradual recovery is determined largely by the kinetics of restoration of eIF4GI rather than by the rephosphorylation of full-length 4E-BP1. These findings suggest that the ability of cells to rephosphorylate 4E-BP1, resynthesise eIF4GI and restore the rate of protein synthesis after inactivation of p53 is an important aspect of recovery following the relief of physiological stress.  相似文献   

15.
The eukaryotic translation initiation factor (eIF) 4F facilitates the recruitment of ribosomes to the mRNA 5' end. The 4E-BPs are small proteins with hypophosphorylated forms that interact with the cap binding protein eIF4E, preventing its interaction with eIF4G, thereby preventing ribosome interaction with mRNA. In sea urchin, fertilization triggers a rapid rise in protein synthesis. Here, we demonstrate that a 4E-BP homologue exists and is associated with eIF4E in unfertilized eggs. We also show that 4E-BP/eIF4E association diminishes a few minutes following fertilization. This decrease is correlated with a decrease in the total amount of 4E-BP in combination with an increase in the phosphorylation of the protein. We propose that 4E-BP acts as a repressor of protein synthesis in unfertilized sea urchin eggs and that 4E-BP/eIF4E dissociation plays an important role in the rise in protein synthesis that occurs shortly following fertilization.  相似文献   

16.
17.
Translation initiation is a key point of regulation in eukaryotic gene expression. 4E-binding proteins (4E-BPs) inhibit initiation by blocking the association of eIF4E with eIF4G, two integral components of the mRNA cap-binding complex. Phosphorylation of 4E-BP1 reduces its ability to bind to eIF4E and thereby to compete with eIF4G. A novel combination of biophysical and biochemical tools was used to measure the impact of phosphorylation and acidic side chain substitution at each potentially modulatory site in 4E-BP1. For each individual site, we have analyzed the effects of modification on eIF4E binding using affinity chromatography and surface plasmon resonance analysis, and on the regulatory function of the 4E-BP1 protein using a yeast in vivo model system and a mammalian in vitro translation assay. We find that modifications at the two sites immediately flanking the eIF4E-binding domain, Thr(46) and Ser(65), consistently have the most significant effects, and that phosphorylation of Ser(65) causes the greatest reduction in binding affinity. These results establish a quantitative framework that should contribute to understanding of the molecular interactions underlying 4E-BP1-mediated translational regulation.  相似文献   

18.
Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) is a member of a family of translation repressor proteins, and a well-known substrate of mechanistic target of rapamycin (mTOR) signaling pathway. Phosphorylation of 4E-BP1 causes its release from eIF4E to allow cap-dependent translation to proceed. Recently, 4E-BP1 was shown to be phosphorylated by other kinases besides mTOR, and overexpression of 4E-BP1 was found in different human carcinomas. In this review, we summarize the novel findings on mTOR independent 4E-BP1 phosphorylation in carcinomas. The implications of overexpression and possible multi-function of 4E-BP1 are also discussed.  相似文献   

19.
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.  相似文献   

20.
The mitochondria play a pivotal role in regulating glucose-induced insulin secretion in the pancreatic beta cell. We have recently demonstrated that glutamate derived from mitochondria participates directly in the stimulation of insulin exocytosis. In the present study, mitochondria isolated from the beta cell line INS-1E generated glutamate when incubated with the tricarboxylic acid cycle intermediate succinate. The generation of glutamate correlated with stimulated mitochondrial activity monitored as oxygen consumption and was inhibited by the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Glutamate is formed by the mitochondrial enzyme glutamate dehydrogenase from alpha-ketoglutarate. Transient overexpression of glutamate dehydrogenase in INS-1E cells resulted in potentiation of glucose-stimulated hormone secretion without affecting basal release. These results further point to glutamate as an intracellular messenger playing a key role in the control of insulin exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号