首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiolipin, a polyunsaturated acidic phospholipid, is found exclusively in bacterial and mitochondrial membranes where it is intimately associated with the enzyme complexes of the respiratory chain. Cardiolipin structure and concentration are central to the function of these enzyme complexes and damage to the phospholipid may have consequences for mitochondrial function. The fluorescent dye, 10 nonyl acridine orange (NAO), has been shown to bind cardiolipin in vitro and is frequently used as a stain in living cells to assay cardiolipin content. Additionally, NAO staining has been used to measure the mitochondrial content of cells as dye binding to mitochondria is reportedly independent of the membrane potential. We used confocal microscopy to examine the properties of NAO in cortical astrocytes, neonatal cardiomyocytes and in isolated brain mitochondria. We show that NAO, a lipophilic cation, stained mitochondria selectively. However, the accumulation of the dye was clearly dependent upon the mitochondrial membrane potential and depolarisation of mitochondria induced a redistribution of dye. Moreover, depolarisation of mitochondria prior to NAO staining also resulted in a reduced NAO signal. These observations demonstrate that loading and retention of NAO is dependant upon membrane potential, and that the dye cannot be used as an assay of either cardiolipin or mitochondrial mass in living cells.  相似文献   

2.
The use of the supravital mitochondrial-specific dye Rhodamine 123 (Rh 123) in combination with flow cytometry permits the monitoring of the changes in the mitochondrial transmembrane potential, reflecting the overall mitochondrial activity of the living cell. While this probe appears to be a potent tool for these studies, it also exhibits an important limit in the interpretation of the results: it cannot distinguish between an increase in mitochondrial activity without biogenesis and a modification of mitochondrial content. 10-n-Nonyl Acridine Orange chloride (NAO) constitutes another mitochondrial specific fluorochrome. In contrast with Rh 123, NAO accumulation in the cell does not seem to be driven by the proton-motrice force but does seem to be related to specific interactions with mitochondrial membrane proteins and/or lipids. In this work, the cytotoxicity of NAO, the kinetics of cellular uptake and the release of the dye have been determined using flow cytometry. The use of several ionophores or mitochondrial inhibitors has confirmed the independence of NAO uptake regarding mitochondrial transmembrane potential. NAO was also used to examine the changes in the mitochondrial compartment during the transfer of articular chondrocytes from cartilage to the culture conditions, where Rh 123 evidenced changes in mitochondrial activity and/or biogenesis, in order to know whether the use of probes with different specificity allows one to distinguish between mitochondrial activity and biogenesis.  相似文献   

3.
The cationic fluorochrome rhodamine 123 (R123) is specifically taken up by mitochondria of live cells where it is retained due to the mitochondrial transmembrane potential. After pulse exposure of human normal quiescent or proliferating lymphocytes, human lymphocytic leukemic MOLT cells, and mice leukemic L1210 cells to 10 micrograms/ml of R123, the dye release was studied using flow cytometry. Two distinct phases of R123 release, each following first-order kinetics, were apparent; the half-time of retention for the rapidly and slowly released fractions of R123 was 0.8-1.1 and 2.8-4.2 h, respectively. Simultaneous supravital cell staining with R123 and Hoechst 33342 made it possible to correlate retention of R123 with cell position in the cell cycle. No significant differences were observed in the rate of R123 release from cells in G1 vs S or vs G2 + M phases of the cycle. The data rule out a possibility that the release of R123 is due to periodic depolarization of the mitochondria in the cell as may be postulated by cell cycle models that assume a transient passage of cells through resting phase following division. The observed similar rates of R123 release regardless of cell type or cell cycle phase suggest that the factors affecting the exchange are similar in normal lymphocytes vs leukemic cells and unrelated to cell proliferation rate or phase of the cell cycle. Two distinct rates of R123 release indicate the presence of two kinds of binding sites differing in affinity to the dye.  相似文献   

4.
The fluorescent dye Rhodamine-123, which selectively stains mitochondria depending on the mitochondrial membrane potential, was used with flow cytometry to evaluate alterations in activity of mitochondria isolated from mouse liver. Under in vitro conditions, with succinate and ADP present in the buffer, mitochondrial activity was affected by a variety of metabolic inhibitors that modify membrane potential. These results demonstrate clearly that flow cytometric techniques using Rhodamine-123 can be employed to study activity in isolated mitochondria.  相似文献   

5.
Summary The transport of [3H] 1,l 5-formyltetrahydrofolate, [3H] folic acid, and [3H]methotrexate by L1210 cell plasma membrane vesicles exhibited multicompartmental behavior. Two separate vesicular compartments (parallel relationship) of approximately equal volume were revealed during measurements of influx and efflux. Flux in one compartment was rapid, saturable, highly temperature-sensitive, and inhibited by pCMBS. Flux in the other compartment exhibited all of the characteristics of passive diffusion. These results imply that our plasma membrane vesicle preparations consist of a mixture of two functional species. Transport of folate into one of these species occurs by passive diffusion alone, whereas transport into the other kind of vesicle occurs by both passive diffusion and carrier-facilitated transport.  相似文献   

6.
Mouse fibroblasts 3T3.4E and two cell lines obtained by fusion (3T3.4E cells x normal human keratinocytes), (3T3 x NHK), and (3T3.4E cells x hand wart keratinocytes), (3T3 x HWK), were compared for mitochondrial activity and content between 5 and 20 days of culture, from the 16th to 20th passage, by using Rh 123 and NAO respectively. In 3T3.4E cells both Rh 123 and NAO fluorescence were similar after 5 and 7 days of culture, indicating no modification of mitochondrial activity and content at that time. However, in cells derived from fusion of 3T3 x NHK or 3T3 x HWK, Rh 123 increased from 5 to 20 days whereas NAO fluorescence was maximal at 7 days of culture and then decreased, indicating that their mitochondrial activity differed from that of 3T3.4E cells. No difference was observed between the 16th and 20th passage. Quantitative morphometry and flow cytometry gave good correlations at 7 days of culture for the cell size, estimated either by the cell area or the cell diameter, and for mitochondria content, evaluated either by the number of mitochondria per cell or NAO fluorescence intensity.Abbreviations FCS Fetal Calf Serum - mt DNA mitochondrial DNA - NAO nonyl-acridine orange - PBS Phosphate Buffer Saline - Rh 123 Rhodamine 123 - 3T3 x NHK (3T3.4E cells x normal human keratinocytes) - 3T3 x HWK (3T3.4E cells x hand wart keratinocytes)  相似文献   

7.
8.
A Maftah  J M Petit  R Julien 《FEBS letters》1990,260(2):236-240
The raf repressor from Escherichia coli regulates the expression of the plasmid-borne raf operon by switching between active and inactive conformational states. Ultracentrifugal analysis of the largely purified repressor proves the DNA-free protein to undergo concentration-dependent dissociation-association. High-speed sedimentation equilibria show that the 72 kDa dimer prevails under meniscus depletion conditions. At intracellular concentrations the 144 kDa dimer-of-dimers is the dominating species. It is suggested that the tetrameric structure of the raf repressor is involved in the recognition of the 18-basepair operator DNA.  相似文献   

9.
BACKGROUND: We set out to develop an assay for the simultaneous analysis of mitochondrial membrane potential and mass using the probes 10-nonyl acridine orange (NAO), MitoFluor Green (MFG), and MitoTracker Green (MTG) in HL60 cells. However, in experiments in which NAO and MFG were combined with orange emitting mitochondrial membrane potential (DeltaPsi(m)) probes, we found clear responses to DeltaPsi(m) altering drugs for both probes. METHODS: The three probes were titrated to determine whether saturation played a role in the response to drugs. The effects of a variety of DeltaPsi(m) altering drugs were tested for MFG and MTG at probe concentrations of 20 nM and 200 nM and for NAO at 0.1 microM and 5 microM, using rhodamine 123 at 0.1 microM as a reference probe. RESULTS: Incubation of GM130, HL60, and U937 cells with 2,3-butanedione monoxime (BDM), nigericin, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), 2,4-dinitrophenol (DNP), gramicidin, ouabain, and valinomycin resulted in increases of the fluorescence intensity for MFG or MTG with only a few exceptions. The fluorescence intensity of cells stained with 0.1 microM NAO increased following incubation with BDM, nigericin, and decreased for FCCP, CCCP, DNP, gramicidin, and valinomycin. The results with 5 microM NAO were similar. CONCLUSIONS: MFG, MTG, and NAO appeared poor choices for the membrane potential independent analysis of mitochondrial membrane mass. Considering the molecular structure of these probes that favor accumulation in the mitochondrial membrane because of a positive charge, our results are not surprising. Cytometry 39:203-210, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   

10.
The ratio of inner to outer mitochondrial membrane area remains close to 1-8 throughout the cell cycle in synchronized cells of Chlorella fusca var, vacuolata 211-8p. Using estimates of this ratio, together with our previous estimates of mitochondrial surface area, to calculate the absolute area of inner mitochondrial membrane, it is demonstrated that growth of the inner mitochondrial membrane during the cell cycle occupies an extended period and parallels the growth of the whole cell. In contrast, the synthesis of succinate dehydrogenase and cytochrome oxidase is restricted to the last third of the cell cycle. It is concluded that mitochondrial growth involves the intercalation of periodically synthesized respiratory enzymes into membranes made earlier in the cycle, with consequent 5-fold changes in the density of active enzyme molecules in the membrane. These observations are discussed in relation to the control of mitochondiral membrane synthesis, membrane assembly and respiration rate during the cell cycle.  相似文献   

11.
The last stages of murein biosynthesis were studied in relation to the division cycle of Escherichia coli in cells synchronized by amino acid starvation (Ron et al., J. Bacteriol. 123:374--376, 1975). Murein synthesis and the activities of the D-alanine carboxypeptidase and transpeptidase were found to vary significantly during the cell cycle. Maximal synthesis and transpeptidation were observed immediately after cell division, whereas maximal D-alanine carboxypeptidase activity was detected before cell division. These results are in agreement with our earlier findings that before cell division there is a stage of increased hydrolysis of the C-terminal D-alanine moiety of newly synthesized murein strands.  相似文献   

12.
Studying mitochondrial membrane proteins for ion or substrate transport is technically difficult, as the organelles are hidden within the cell interior and thus inaccessible to many conventional nondisruptive techniques. This technical barrier can potentially be overcome if the mitochondrial membrane proteins are targeted to the cell surface, where they can be more readily studied. We undertook experiments presented here to target two related mitochondrial membrane proteins, mitochondrial ATP-binding cassette-1 and -2 protein (mABC1 and mABC2, respectively) to the cell surface for functional studies. These two proteins have an N-terminal mitochondrial targeting signal (MTS), and we hypothesized that removal of this sequence or addition of a cell surface targeting signal would lead to cell membrane targeting of these proteins. When the MTS was removed from mABC1, it localized to intracellular secretory compartments as well as the plasma membrane. However, truncated mABC2 lacking the MTS aggregated inside the cell. Addition of a cell membrane signal sequence or the transmembrane domain from CD8 to the N-terminus of mABC1 or mABC2 resulted in similar subcellular localizations. We then performed patch clamp on cells expressing mABC1 on their surface. These cells exhibited nonselective transport of K(+) and Na(+) ions and resulted in the loss of membrane potential. Our findings open new ways to study mitochondrial membrane proteins in established cell culture systems by targeting them to the cell surface, where they can more reliably be studied using various molecular and cellular techniques.  相似文献   

13.
14.
15.
The pattern of phospholipid synthesis during the cell cycle of Caulobacter crescentus has been determined. Although the phospholipid composition of swarmer and stalked cells was indistinguishable in continuously labeled cultures if the two cell types were pulse-labeled for a short time period, marked differences in the pattern of phospholipid synthesis were detected. Pulse-labeled swarmer cells exhibited a higher proportion of phosphatidic acid and a lower proportion of phosphatidylglycerol. In addition, minor phospholipids were detected in the swarmer cells that were not detected in stalked cells. Stalked cells that developed directly from swarmer cells showed that same phospholipid profile as the swarmer cells. The switch to the second phospholipid profile was observed to occur at the predivisional cell stage. Because cell division then yielded a swarmer cell with a different phospholipid profile than its sibling stalked cell, the cell division process may trigger a mechanism which alters the pattern of phospholipid synthesis.  相似文献   

16.
17.
J M DiRienzo  M Inouye 《Cell》1979,17(1):155-161
The reduction of the membrane lipids of E. coli to a nonfluid state resulted in the accumulation in the cell envelope of a high molecular weight precursor of the protoIG protein, a major outer membrane protein. The protoIG protein was as sensitive to trypsin as the mature toIG protein assembled in the outer membrane. In contrast to the toIG protein, however, the accumulated protoIG protein was easily released from the envelope fraction by both sodium lauryl sarcosinate extraction and sonication. This indicated that the precursor protein was loosely associated with the cell membrane. When a fluid lipid state was restored, the protoIG protein was processed to the mature form which was then correctly assembled in the outer membrane. These results suggest that the protoIG protein produced under nonfluid lipid conditions was properly translocated across the cytoplasmic membrane, but could not be assembled in the outer membrane due either to the reversible inhibition of the processing of the ProtoIG to the toIG protein or to the lack of interaction with a specific outer membrane component(s). Reduced lipid fluidity also caused various alterations in the biosynthesis and assembly of other membrane proteins. In addition to the toIG protein, a large number of new proteins were accumulated in the membrane. Alternatively, the matrix protein as well as the promatrix protein were not detected in the cell envelope. On the other hand, the lipoprotein was normally produced, processed, modified and assembled in the outer membrane. These results indicate that the outer membrane proteins are synthesized and assembled according to several different mechanisms, on which the physical state of the membrane has various effects.  相似文献   

18.
S Ichimura 《Biopolymers》1975,14(5):1033-1047
Fluorescence of acridine orange bound to RNA or DNA in the single-stranded form including single-stranded synthetic polyribo- or polydeoxyribonucleotides was measured in the expectation that some distinct structural characteristic between single-stranded RNA and DNA might be reflected by a specific fluorescent behaviour of bound dyes. It was found that the complex of the dye with single-stranded RNA emits a weaker red fluorescence around 650 nm than the complex with single-stranded DNA at low phosphate-to-dye ratios. The fact could be explained neither by a direct interaction of bound dyes with the 2′-hydroxyl group of ribose in RNA nor by the difference in the G-C content of the nucleic acids. On the basis of the character of dye molecules emitting the red fluorescence, it was suggested that the bases in single-stranded RNA might be buried in some hydrophobic environment that would make the dyes less likely to interact with them, compared with the bases in single-stranded DNA. It was further inferred that some conformational rigidity of single-stranded RNA may partially be responsible for the weaker red fluorescence.  相似文献   

19.
Simultaneous imaging of cell and mitochondrial membrane potentials.   总被引:12,自引:0,他引:12       下载免费PDF全文
The distribution of charged membrane-permeable molecular probes between intracellular organelles, the cytoplasm, and the outside medium is governed by the relative membrane electrical potentials of these regions through coupled equilibria described by the Nernst equation. A series of highly fluorescent cationic dyes of low membrane binding and toxicity (Ehrenberg, B., V. Montana, M.-D. Wei, J. P. Wuskell, and L. M. Loew, 1988. Biophys. J. 53:785-794) allows the monitoring of these equilibria through digital imaging video microscopy. We employ this combination of technologies to assess, simultaneously, the membrane potentials of cells and of their organelles in situ. We describe the methodology and optimal conditions for such measurements, and apply the technique to concomitantly follow, with good time resolution, the mitochondrial and plasma membrane potentials in several cultured cell lines. The time course of variations induced by chemical agents (ionophores, uncouplers, electron transport, and energy transfer inhibitors) in either or both these potentials is easily quantitated, and in accordance with mechanistic expectations. The methodology should therefore be applicable to the study of more subtle and specific, biologically induced potential changes in cells.  相似文献   

20.
In the presence of 1–5 mM n-butyrate, murine leukemic L1210 cells cease proliferation and become arrested in the G1A compartment of the G1 phase. Cells in this compartment, in comparison with the remaining cells of the G1 phase (G1B), are characterized by low RNA content and more condensed chromatin. During unperturbed growth the cell residence times in G1A are of indeterminate duration (exponentially distributed); the half-time of L1210 cell residence in G1A is about 1.4 h. The effect of n-butyrate in arresting cells in G1A was concentration-dependent. However, the sensitivity of L1210 cells to this drug was markedly enhanced when cells were treated for longer than one generation (12 h). Cells arrested in G1A remained viable and when n-butyrate was removed, after a lag period, they resumed progression through the cycle.The effect of n-butyrate on cell progression through various parts of the cycle was studied in a stathmokinetic experiment. The rate of cell entrance into mitosis was decreased by 30, 60 and 110%, in the presence of 1, 2.5 and 5 mM n-butyrate respectively, thus indicating a slowdown in cell progression through G2 and S. The duration of G2 was prolonged by 20, 70 and 140% at 1, 2.5 and 5 mM n-butyrate respectively. The half-time of cell residence in G1A was increased by as much as 1.5-, 6.3- and 15.6-fold by 1, 2.5 and 5 mM n-butyrate. Progression through late G1 (G1B) was not affected at 1 mM, and could not be estimated at higher drug concentrations. The effects on cell cycle progression were evident 1 h after addition of n-butyrate.DNA in situ in nuclei of n-butyrate-treated cells had lowered (by 2–8 °C) stability to thermal denaturation and increased (by 15%) accessibility to DNase I. The decrease in DNA stability to heat was more pronounced when permealized cells were heated in the presence of 1 mM MgCl2 rather than EDTA. DNA in situ in the nuclei of n-butyrate-treated cells also showed decreased sensitivity to acid-induced denaturation. Changes in chromatin were seen in all cells, regardless of cell cycle phase, within the first hours after addition of n-butyrate. Mitotic cells, however, reacted to n-butyrate more rapidly than interphase cells. The observed changes in L1210 cells are most likely a consequence of histone modifications (acetylation of inner histones, dephosphorylation of histone H1) induced by n-butyrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号