首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA transfer by bacterial conjugation requires a mating pair formation (Mpf) system that specifies functions for establishing the physical contact between the donor and the recipient cell and for DNA transport across membranes. Plasmid RP4 (IncP alpha) contains two transfer regions designated Tra1 and Tra2, both of which contribute to Mpf. Twelve components are essential for Mpf, TraF of Tra1 and 11 Tra2 proteins, TrbB, -C, -D, -E, -F, -G, -H, -I, -J, -K, and -L. The phenotype of defined mutants in each of the Tra2 genes was determined. Each of the genes, except trbK, was found to be essential for RP4-specific plasmid transfer and for mobilization of the IncQ plasmid RSF1010. The latter process did not absolutely require trbF, but a severe reduction of the mobilization frequency occurred in its absence. Transfer proficiency of the mutants was restored by complementation with defined Tra2 segments containing single trb genes. Donor-specific phage propagation showed that traF and each of the genes encoded by Tra2 are involved. Phage PRD1, however, still adsorbed to the trbK mutant strain but not to any of the other mutant strains, suggesting the existence of a plasmid-encoded receptor complex. Strains containing the Tra2 plasmid in concert with traF were found to overexpress trb products as well as extracellular filaments visualized by electron microscopy. Each trb gene and traF are needed for the formation of the pilus-like structures. The trbK gene, which is required for PRD1 propagation and for pilus production but not for DNA transfer on solid media, encodes the RP4 entry-exclusion function. The components of the RP4 Mpf system are discussed in the context of related macromolecule export systems.  相似文献   

2.
Plasmid conjugation systems are composed of two components, the DNA transfer and replication system, or Dtr, and the mating pair formation system, or Mpf. During conjugal transfer an essential factor, called the coupling protein, is thought to interface the Dtr, in the form of the relaxosome, with the Mpf, in the form of the mating bridge. These proteins, such as TraG from the IncP1 plasmid RP4 (TraG(RP4)) and TraG and VirD4 from the conjugal transfer and T-DNA transfer systems of Ti plasmids, are believed to dictate specificity of the interactions that can occur between different Dtr and Mpf components. The Ti plasmids of Agrobacterium tumefaciens do not mobilize vectors containing the oriT of RP4, but these IncP1 plasmid derivatives lack the trans-acting Dtr functions and TraG(RP4). A. tumefaciens donors transferred a chimeric plasmid that contains the oriT and Dtr genes of RP4 and the Mpf genes of pTiC58, indicating that the Ti plasmid mating bridge can interact with the RP4 relaxosome. However, the Ti plasmid did not mobilize transfer from an IncQ relaxosome. The Ti plasmid did mobilize such plasmids if TraG(RP4) was expressed in the donors. Mutations in traG(RP4) with defined effects on the RP4 transfer system exhibited similar phenotypes for Ti plasmid-mediated mobilization of the IncQ vector. When provided with VirD4, the tra system of pTiC58 mobilized plasmids from the IncQ relaxosome. However, neither TraG(RP4) nor VirD4 restored transfer to a traG mutant of the Ti plasmid. VirD4 also failed to complement a traG(RP4) mutant for transfer from the RP4 relaxosome or for RP4-mediated mobilization from the IncQ relaxosome. TraG(RP4)-mediated mobilization of the IncQ plasmid by pTiC58 did not inhibit Ti plasmid transfer, suggesting that the relaxosomes of the two plasmids do not compete for the same mating bridge. We conclude that TraG(RP4) and VirD4 couples the IncQ but not the Ti plasmid relaxosome to the Ti plasmid mating bridge. However, VirD4 cannot couple the IncP1 or the IncQ relaxosome to the RP4 mating bridge. These results support a model in which the coupling proteins specify the interactions between Dtr and Mpf components of mating systems.  相似文献   

3.
J Haase  E Lanka 《Journal of bacteriology》1997,179(18):5728-5735
TraF, an essential component of the conjugative transfer apparatus of the broad-host-range plasmid RP4 (IncP), which is located at the periplasmic side of the cytoplasmic membrane, encodes a specific protease. The traF gene products of IncP and Ti plasmids show extensive similarities to prokaryotic and eukaryotic signal peptidases. Mutational analysis of RP4 TraF revealed that the mechanism of the proteolytic cleavage reaction resembles that of signal and LexA-like peptidases. Among the RP4 transfer functions, the product of the Tra2 gene, trbC, was identified as a target for the TraF protease activity. TrbC is homologous to VirB2 of Ti plasmids and thought to encode the RP4 prepilin. The maturation of TrbC involves three processing reactions: (i) the removal of the N-terminal signal peptide by Escherichia coli signal peptidase I (Lep), (ii) a proteolytic cleavage at the C terminus by an as yet unidentified host cell enzyme, and (iii) C-terminal processing by TraF. The third reaction of the maturation process is critical for conjugative transfer, pilus synthesis, and the propagation of the donor-specific bacteriophage PRD1. Thus, cleavage of TrbC by TraF appears to be one of the initial steps in a cascade of processes involved in export of the RP4 pilus subunit and pilus assembly mediated by the RP4 mating pair formation function.  相似文献   

4.
S K Farrand  I Hwang    D M Cook 《Journal of bacteriology》1996,178(14):4233-4247
The Ti plasmids of Agrobacterium tumefaciens encode two transfer systems. One mediates the translocation of the T-DNA from the bacterium to a plant cell, while the other is responsible for the conjugal transfer of the entire Ti plasmid from one bacterium to another. The determinants responsible for conjugal transfer map to two regions, tra and trb, of the nopaline-type Ti plasmid pTiC58. By using transposon mutagenesis with Tn3HoHo1, we localized the tra determinants to an 8.5-kb region that also contains the oriT region. Fusions to lacZ formed by transposon insertions indicated that this region is expressed as two divergently transcribed units. We determined the complete nucleotide sequence of an 8,755-bp region of the Ti plasmid encompassing the transposon insertions defining tra. The region contains six identifiable genes organized as two units divergently transcribable from a 258-bp inter-genic region that contains the oriT site. One unit encodes traA, traF, and traB, while the second encodes traC, traD, and traG. Reporter insertions located downstream of both sets of genes did not affect conjugation but were expressed, suggesting that the two units encode additional genes that are not involved in transfer under the conditions tested. Proteins of the predicted sizes were expressible from traA, traC, traD, and traG. The products of several Ti plasmid tra genes are related to those of other conjugation systems. The 127-kDa protein expressed from traA contains domains related to MobA of RSF1O1O and to the helicase domain of TraI of plasmid F. The translation product of traF is related to TraF of RP4, and that of traG is related to TraG of RP4 and to VirD4 of the Ti plasmid T-DNA transfer system. Genetic analysis indicated that at least traG and traF are essential for conjugal transfer, while sequence analysis predicts that traA also encodes an essential function. traB, while not essential, is required for maximum frequency of transfer. Patterns of sequence relatedness indicate that the oriT and the predicted cognate site-specific endonuclease encoded by traA share lineage with those of the transfer systems of RSF1010 and plasmid F, while genes of the Ti plasmid encoding other essential tra functions share common ancestry with genes of the RP4 conjugation system.  相似文献   

5.
The conjugative transfer region 1 (Tra1) of the IncHI1 plasmid R27 was subjected to DNA sequence analysis, mutagenesis, genetic complementation, and an H-pilus-specific phage assay. Analysis of the nucleotide sequence indicated that the Tra1 region contains genes coding for mating pair formation (Mpf) and DNA transfer replication (Dtr) and a coupling protein. Insertional disruptions of 9 of the 14 open reading frames (ORFs) in the Tra1 region resulted in a transfer-deficient phenotype. Conjugative transfer was restored for each transfer mutant by genetic complementation. An intergenic region between traH and trhR was cloned and mobilized by R27, indicating the presence of an origin of transfer (oriT). The five ORFs immediately downstream of the oriT region are involved in H-pilus production, as determined by an H-pilus-specific phage assay. Three of these ORFs encode proteins homologous to Mpf proteins from IncF plasmids. Upstream of the oriT region are four ORFs required for plasmid transfer but not H-pilus production. TraI contains sequence motifs that are characteristic of relaxases from the IncP lineage but share no overall homology to known relaxases. TraJ contains both an Arc repressor motif and a leucine zipper motif. A putative coupling protein, TraG, shares a low level of homology to the TraG family of coupling proteins and contains motifs that are important for DNA transfer. This analysis indicates that the Mpf components of R27 share a common lineage with those of the IncF transfer system, whereas the relaxase of R27 is ancestrally related to that of the IncP transfer system.  相似文献   

6.
Many Bacteroides transfer factors are mobilizable in Escherichia coli when coresident with the IncP conjugative plasmid RP4, but not F. To begin characterization and potential interaction between Bacteroides mobilizable transfer factors and the RP4 mating channel, both mutants and deletions of the DNA processing (dtr), mating pair formation (mpf) and traG coupling genes of RP4 were tested for mobilization of Bacteroides plasmid pLV22a. All 10 mpf but none of the four dtr genes were required for mobilization of pLV22a. The RP4 TraG coupling protein (CP) was also required for mobilization of pLV22a, but could be substituted by a C-terminal deletion mutant of the F TraD CP. Potential interactions of the TraG CP with relaxase protein(s) and transfer DNA of both RP4 and pLV22a were assessed. Overlay assays identified productive interactions between TraG and the relaxase proteins of both MbpB and TraI from pLV22a and RP4 respectively. The Agrobacterium Transfer-ImmunoPrecipitation (TrIP) assay also identified an interaction between TraG and both RP4 and pLV22a transfer DNA. Thus, mobilization of the Bacteroides pLV22a in E. coli utilizes both RP4 Mpf and CP functions including an interaction between the relaxosome and the RP4 CP similar to that of cognate RP4 plasmid.  相似文献   

7.
The products of clones carrying the F plasmid transfer operon gene, traF, were analyzed. Proteins expressed in maxicells were labeled with [35S]methionine and examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Clones carrying the wild-type traF gene expressed two polypeptide products that were not products of clones containing the traF13 amber mutation. These migrated with apparent molecular weights (Ma) of 27,000 and 25,000. A pulse-chase experiment suggested that the larger product was a precursor of the smaller one. In the presence of ethanol, the Ma-27,000 polypeptide accumulated and the Ma-25,000 product was not expressed. These results indicated that the traF protein undergoes proteolytic processing associated with export. Cell fractionation experiments further indicated that the greatest concentration of the mature (Ma 25,000) TraF protein was located in the periplasm. The DNA sequence of traF and the position of the transition mutation in traF13 DNA were also determined. Sequence analysis suggested that traF would be expressed as a 247-amino-acid, Mr-28,006 polypeptide. The 19 amino acids at the amino terminus of this polypeptide appear to constitute a typical membrane leader peptide, while the remainder of the molecule (Mr 25,942) is predicted to be primarily hydrophilic in character.  相似文献   

8.
D Balzer  W Pansegrau    E Lanka 《Journal of bacteriology》1994,176(14):4285-4295
Two essential transfer genes of the conjugative plasmid RP4 were altered by site-directed mutagenesis: traG of the primase operon and traI of the relaxase operon. To evaluate effects on the transfer phenotype of the point mutations, we have reconstituted the RP4 transfer system by fusion of the transfer regions Tra1 and Tra2 to the small multicopy replicon ColD. Deletions in traG or traI served to determine the Tra phenotype of mutant plasmids by trans complementation. Two motifs of TraG which are highly conserved among TraG-like proteins in several other conjugative DNA transfer systems were found to be essential for TraG function. One of the motifs resembles that of a nucleotide binding fold of type B. The relaxase (TraI) catalyzes the specific cleaving-joining reaction at the transfer origin needed to initiate and terminate conjugative DNA transfer (W. Pansegrau, W. Schröder, and E. Lanka, Proc. Natl. Acad. Sci. USA 90:2925-2929, 1993). Phenotypes of mutations in three motifs that belong to the active center of the relaxase confirmed previously obtained biochemical evidence for the contributions of the motifs to the catalytic activity of TraI. Expression of the relaxase operon is greatly increased in the absence of an intact TraI protein. This finding suggests that the relaxosome which assembles only in the presence of the TraI in addition to its enzymatic activity plays a role in gene regulation.  相似文献   

9.
During bacterial conjugation, the single-stranded DNA molecule is transferred through the cell envelopes of the donor and the recipient cell. A membrane-spanning transfer apparatus encoded by conjugative plasmids has been proposed to facilitate protein and DNA transport. For the IncPalpha plasmid RP4, a thorough sequence analysis of the gene products of the transfer regions Tra1 and Tra2 revealed typical features of mainly inner membrane proteins. We localized essential RP4 transfer functions to Escherichia coli cell fractions by immunological detection with specific polyclonal antisera. Each of the gene products of the RP4 mating pair formation (Mpf) system, specified by the Tra2 core region and by traF of the Tra1 region, was found in the outer membrane fraction with one exception, the TrbB protein, which behaved like a soluble protein. The membrane preparation from Mpf-containing cells had an additional membrane fraction whose density was intermediate between those of the cytoplasmic and outer membranes, suggesting the presence of attachment zones between the two E. coli membranes. The Tra1 region is known to encode the components of the RP4 relaxosome. Several gene products of this transfer region, including the relaxase TraI, were detected in the soluble fraction, but also in the inner membrane fraction. This indicates that the nucleoprotein complex is associated with and/or assembled facing the cytoplasmic site of the E. coli cell envelope. The Tra1 protein TraG was predominantly localized to the cytoplasmic membrane, supporting its potential role as an interface between the RP4 Mpf system and the relaxosome.  相似文献   

10.
11.
F and R27 are conjugative plasmids of enteric bacteria belonging to the IncF and IncHI1 plasmid incompatibility groups, respectively. Based on sequence analysis, two genes of the F transfer region, traF and trbB, and three genes of the R27 transfer region, trhF, dsbC, and htdT, are predicted to encode periplasmic proteins containing a C-terminal thioredoxin fold. The C-X-X-C active-site motif of thioredoxins is present in all of these proteins except TraF(F). Escherichia coli carrying a dsbA mutation, which is deficient in disulfide bond formation, cannot synthesize pili and exhibits hypersensitivity to dithiothreitol (DTT) as monitored by mating ability. Overproduction of the E. coli disulfide bond isomerase DsbC, TrbB(F), DsbC(R27), or HtdT(R27), but not TraF(F) or TrhF(R27), reverses this hypersensitivity to DTT. Site-directed mutagenesis established that the C-X-X-C motif was necessary for this activity. Secretion into the periplasm of the C-terminal regions of TrbB(F) and DsbC(R27), containing putative thioredoxin folds, but not TrhF(R27), partially complemented the host dsbA mutation. A trbB(F) deletion mutant showed a 10-fold-lower mating efficiency in an E. coli dsbC null strain but had no phenotype in wild-type E. coli, suggesting redundancy in function between TrbB(F) and E. coli DsbC. Our results indicate that TrbB(F), DsbC(R27), and HtdT(R27) are putative disulfide bond isomerases for their respective transfer systems. TraF(F) is essential for conjugation but appears to have a function other than disulfide bond chemistry.  相似文献   

12.
PRD1, a lipid-containing double-stranded DNA bacteriophage, uses the mating pair formation (Mpf) complex encoded by conjugative IncP plasmids as a receptor. Functions responsible for conjugative transfer of IncP plasmids are encoded by two distinct regions, Tra1 and Tra2. Ten Tra2 region gene products (TrbB to TrbL) and one from the Tra1 region (TraF) form the Mpf complex. We carried out a mutational analysis of the PRD1 receptor complex proteins by isolating spontaneous PRD1-resistant mutants. The mutations were distributed among the trb genes in the Tra2 region and accumulated predominantly in three genes, trbC, trbE, and trbL. Three of 307 phage-resistant mutants were weakly transfer proficient. Mutations causing a phage adsorption-deficient, transfer-positive phenotype were analyzed by sequencing.  相似文献   

13.
Transfer genes of the IncP plasmid RP4 are grouped in two separate regions, designated Tra1 and Tra2. Tra2 gene products are proposed to be mainly responsible for the formation of mating pairs in conjugating cells. To provide information relevant to understanding the function of Tra2 gene products, the nucleotide sequence of the entire RP4 Tra2 region is presented here. Twelve open reading frames were identified in the Tra2 core region, being essential for intraspecific Escherichia coli matings. Predicted sizes of 11 of the 12 Tra2 polypeptides could be verified by expression in E. coli. Based on hydropathy plot analysis, most of the Tra2 open reading frames encode proteins that may interact with membranes. Interestingly, six of the predicted Tra2 gene products exhibited significant sequence similarities to gene products encoded by the VirB operon of the Agrobacterium Ti plasmid. VirB proteins are thought to function in the formation of a transmembrane structure that mediates the passage of T-DNA molecules from bacteria into plant cells. Because of this analogy and the hydropathy of Tra2 gene products, we assume that the DNA transfer machineries acting in bacterial conjugation and T-DNA transfer are structurally and functionally similar. Therefore, the data presented here, support the hypothesis that Ti vir and IncP tra genes evolved from a common ancestor. This suggestion is favored by previous findings of sequence similarities between the IncP and Ti DNA transfer system.  相似文献   

14.
The conjugation system of the IncP alpha plasmid RK2/RP4 is encoded by transfer regions designated Tra1, Tra2, and Tra3. The Tra1 core region, cloned on plasmid pDG4 delta 22, consists of the origin of transfer (oriT) and 2.6 kilobases of flanking DNA providing IncP alpha plasmid-specific functions that allow pDG4 delta 22 to be mobilized by the heterologous IncP beta plasmid R751. Tn5 insertions in pDG4 delta 22 define a minimal 2.2-kilobase region required for plasmid-specific transfer of oriT. The Tra1 core contains the traJ and traK genes as well as an 18-kilodalton open reading frame downstream of traJ. The traJ and traK genes were shown to be required for transfer by complementation of inserts within these genes. Genetic evidence for the role of the 18-kilodalton open reading frame in transfer was obtained, although this protein has not been detected in cell lysates. These studies indicate that at least three transfer proteins are involved in plasmid-specific interactions at oriT.  相似文献   

15.
The nucleotide sequence of the relaxase operon and the leader operon which are part of the Tra1 region of the promiscuous plasmid RP4 was determined. These two polycistronic operons are transcribed divergently from an intergenic region of about 360 bp containing the transfer origin and six close-packed genes. A seventh gene completely overlaps another one in a different reading frame. Conjugative DNA transfer proceeds unidirectionally from oriT with the leader operon heading the DNA to be transferred. The traI gene of the relaxase operon includes within its 3' terminal region a promoter controlling the 7.2-kb polycistronic primase operon. Comparative sequence analysis of the closely related IncP plasmid R751 revealed a similarity of 74% at the nucleotide sequence level, indicating that RP4 and R751 have evolved from a common ancestor. The gene organization of relaxase- and leader operons is conserved among the two IncP plasmids. The transfer origins and the genes traJ and traK exhibit greater sequence divergence than the other genes of the corresponding operons. This is conceivable, because traJ and traK are specificity determinants, the products of which can only recognize homologous oriT sequences. Surprisingly, the organization of the IncP relaxase operons resembles that of the virD operon of Agrobacterium tumefaciens plasmid pTiA6 that mediates DNA transfer to plant cells by a process analogous to bacterial conjugation. Furthermore, the IncP TraG proteins and the product of the virD4 gene share extended amino acid sequence similarity, suggesting a functional relationship.  相似文献   

16.
The pilus subunit, the pilin, of conjugative IncP pili is encoded by the trbC gene. IncP pilin is composed of 78 amino acids forming a ring structure (R. Eisenbrandt, M. Kalkum, E.-M. Lai, C. I. Kado, and E. Lanka, J. Biol. Chem. 274:22548-22555, 1999). Three enzymes are involved in maturation of the pilin: LepB of Escherichia coli for signal peptide removal and a yet-unidentified protease for removal of 27 C-terminal residues. Both enzymes are chromosome encoded. Finally, the inner membrane-associated IncP TraF replaces a four-amino-acid C-terminal peptide with the truncated N terminus, yielding the cyclic polypeptide. We refer to the latter process as "prepilin cyclization." We have used site-directed mutagenesis of trbC and traF to unravel the pilin maturation process. Each of the mutants was analyzed for its phenotypes of prepilin cyclization, pilus formation, donor-specific phage adsorption, and conjugative DNA transfer abilities. Effective prepilin cyclization was determined by matrix-assisted laser desorption-ionization-mass spectrometry using an optimized sample preparation technique of whole cells and trans-3-indolyl acrylic acid as a matrix. We found that several amino acid exchanges in the TrbC core sequence allow prepilin cyclization but disable the succeeding pilus assembly. We propose a mechanism explaining how the signal peptidase homologue TraF attacks a C-terminal section of the TrbC core sequence via an activated serine residue. Rather than cleaving and releasing hydrolyzed peptides, TraF presumably reacts as a peptidyl transferase, involving the N terminus of TrbC in the aminolysis of a postulated TraF-acetyl-TrbC intermediate. Under formal loss of a C-terminal tetrapeptide, a new peptide bond is formed in a concerted action, connecting serine 37 with glycine 114 of TrbC.  相似文献   

17.
18.
The product of the F plasmid transfer gene, traN, is thought to be required for the formation of stable mating aggregates during F-directed conjugation. By testing chimeric plasmids that express F transfer region segments for complementation of F lac traN mutant transfer, we mapped traN to the F transfer region between trbC and traF. Both protein and DNA sequence analysis determined the traN product to be a large, 66,000-Mr, polypeptide that undergoes signal sequence processing. The mature polypeptide was associated with outer membrane protein fractions, and a protease accessivity test confirmed that at least one portion of TraN is exposed on the cell surface. Our DNA sequence analysis also revealed that another gene, trbE, is located between traN and traF. The product of trbE was identified and shown to be a small, integral, inner membrane protein. The mating efficiency and pilus-specific phage susceptibility of a trbE::kan insertion mutant suggested that trbE is not essential for F transfer from Escherichia coli K-12 under standard mating conditions.  相似文献   

19.
In order to establish a gene transfer system for yeast by promiscuous conjugation, we constructed plasmid pAY101 which contained an oriT sequence derived from RK2 (IncP) and the yeast TRP1 and ARS1 genes. A conjugation mixture consisted of yeast Saccharomyces cerevisiae, E. coli harboring pAY101, and E. coli carrying a helper plasmid with mob and tra. In the conjugation mixture a tryptophan-requiring yeast mutant (trp1) was converted to be prototrophic for tryptophan at a frequency of about 10(-5) to 10(-3) per recipient cell. This E. coli-yeast conjugation system required the mob, tra, oriT, TRP1 and ARS1 genes. The mob and tra genes were trans-acting elements as in an E. coli conjugation system. The mobilization was inhibited by nalidixic acid as in a typical bacterial conjugation. DNA analysis indicated that the plasmid pAY101 was transferred from E. coli to S. cerevisiae, and retained its original structure and function in yeast host cells.  相似文献   

20.
The presence of derivatives of the broad host range plasmid RP4 in strains of Rhizobium leguminosarum biovar viciae severely inhibited nitrogen fixation by these strains in nodules on cultivars of pea (Pisum sativum). The strains formed small white nodules. Yield and total nitrogen values were comparable with those obtained for plants inoculated with a non-nodulating mutant. Strains carrying the same derivatives gave rise to nitrogen fixing nodules when inoculated on cultivars of lentils (Lens culinaris). Similar results were observed with plasmid R702 but not with R751, suggesting that the effect is limited to plasmids of the IncPα classification. Histological examination of nodules induced by strains carrying RP4 indicated that there are fewer infected cells and starch granules are organised unusually in the infected cells. Tn5 mutagenesis of plasmid RP4-4 was undertaken and Tn5 inserts were screened for abolition of the effect on nitrogen fixation. Eight mutants, having no effect on nitrogen fixation, were isolated. Seven of these had lost the ability to transfer by conjugation and the eighth was greatly reduced in conjugation frequency. Physical analysis of the transposon inserts revealed that they were located in the Tra regions of RP4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号