首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glandular trichomes occur on both surfaces of leaves of all examined genera and species of the subtribe Pleurothallidinae (Orchidaceae). Trichome initiation is effected by one periclinal division of a protodermal cell, producing a thin-walled, globose apical cell with a relatively large nucleus and a subapical stalk cell with heavily cutinized lateral walls. In some species a second periclinal division produces a third small basal cell also having thick lateral walls but thin transverse walls. As leaf development proceeds, the trichome apparatus assumes a sunken position due to continued anticlinal divisions of protoderm. Prior to laminar expansion and guard-mother-cell division on the abaxial surface, the wall of the apical cell ruptures and is replaced by a brown opaque residue. Finally, after vascular tissue differentiation and the cessation of meristematic activity, two or more pitted foot cells develop at the base of the trichome and adjacent to the water-storing hypodermal layers. Preliminary investigations indicate that the trichome apparatus is absorptive throughout its development and similar in function to tillandsioid scales in Bromeliaceae.  相似文献   

2.
Spectinomycin, an inhibitor of plastid protein synthesis, can be used to mark specific cell layers in the shoot meristem of Brassica napus. Pale yellow-green (YG) plants resulting from spectinomycin-treatment can be propagated indefinitely in vitro. Microscopic examination showed that YG-plants result from inactivation of plastids in the L2 and L3 layers and are composed of a pale green epidermis covering a white mesophyll layer. Epidermal cells of YG and normal green plants are similar and contain 10-20 small pale green plastids. YG plants are equivalent to periclinal chimeras with the important distinction that there is no genotypic difference between the white and green cell layers. Periclinal divisions of epidermal cells take place at all stages of leaf development to produce invaginations of green mesophyll located in sectors of widely varying sizes. A periclinal division rate of 1 in 3000-4000 anticlinal divisions for the adaxial epidermis, was 2-3-fold higher than that estimated for the abaxial epidermis. Analysis of white and green mesophyll showed that chloroplasts are essential for palisade cell differentiation and this requirement is cell-autonomous. Stable marking of cell lineages with spectinomycin is simple, rapid and reveals the requirement for functional plastids in cellular differentiation.  相似文献   

3.
Developmental process of sun and shade leaves in Chenopodium album L.   总被引:1,自引:0,他引:1  
The authors’ previous study of Chenopodium album L. revealed that the light signal for anatomical differentiation of sun and shade leaves is sensed by mature leaves, not by developing leaves. They suggested that the two‐cell‐layered palisade tissue of the sun leaves would be formed without a change in the total palisade tissue cell number. To verify that suggestion, a detailed study was made of the developmental processes of the sun and shade leaves of C. album with respect to the division of palisade tissue cells (PCs) and the data was expressed against developmental time (leaf plastochron index, LPI). The total number of PCs per leaf did not differ between the sun and shade leaves throughout leaf development (from LPI ?1 to 10). In both sun and shade leaves, anticlinal cell division of PCs occurred most frequently from LPI ?1 to 2. In sun leaves, periclinal division of PCs occurred synchronously with anticlinal division. The constancy of the total number of PCs indicates that periclinal divisions occur at the expense of anticlinal divisions. These results support the above suggestion that two‐cell‐layered palisade tissue is formed by a change of cell division direction without a change in the total number of PCs. PCs would be able to recognize the polarity or axis that is perpendicular to the leaf plane and thereby change the direction of their cell divisions in response to the light signal from mature leaves.  相似文献   

4.
3种龙葵表皮毛类型及发育过程观察研究   总被引:6,自引:0,他引:6  
通过观察发现龙葵(Solanum nigrum L.)、少花龙葵(S.photeinocarpum Nakam,etO-dshi)和黄果龙葵(S.nigum L.var.suaveolens G.L.Guo)的表皮毛均为腺毛,主要有单细胞头腺毛和多细胞头腺毛2种。腺毛的原始细胞都来源于原表皮细胞,经2次平周分裂产生基细胞、柄细胞和顶端细胞、在腺毛后期的形态发生中,柄细胞和顶细胞的分裂状态决定腺毛的  相似文献   

5.
Cell division during development of the dermal system of fruit of the grape cv. Gordo is confined to the first growth period. The epidermis is conserved with anticlinal proliferative cell divisions providing for increase in cell number. The hypodermis is the layer of origin of the collenchymatous dermal system. Six or seven layers are differentiated by periclinal cell divisions early in the first growth period, and later increase in size is obtained by proliferative anticlinal cell divisions. These observations are related to developmental and genetic control of fruit shape and volume.  相似文献   

6.
McHale NA 《The Plant cell》1993,5(9):1029-1038
Leaf primordia of the lam-1 mutant of Nicotiana sylvestris grow normally in length but remain bladeless throughout development. The blade initiation site is established at the normal time and position in lam-1 primordia. Anticlinal divisions proceed normally in the outer L1 and L2 layers, but the inner L3 cells fail to establish the periclinal divisions that normally generate the middle mesophyll core. The lam-1 mutation also blocks formation of blade mesophyll from distal L2 cells. This suggests that LAM-1 controls a common step in initiation of blade tissue from the L2 and L3 lineage of the primordium. Another recessive mutation (fat) was isolated in N. sylvestris that induces abnormal periclinal divisions in the mesophyll during blade initiation and expansion. This generates a blade approximately twice its normal thickness by doubling the number of mesophyll cell layers from four to approximately eight. Presumably, the fat mutation defines a negative regulator involved in repression of periclinal divisions in the blade. The lam-1 fat double mutant shows radial proliferation of mesophyll cells at the blade initiation site. This produces a highly disorganized, club-shaped blade that appears to represent an additive effect of the lam-1 and fat mutations on blade founder cells.  相似文献   

7.
Development and Histochemistry of the Pistil of the Grape, Vitis vinifera   总被引:1,自引:0,他引:1  
The development of the grape pistil is followed for a periodof 9 weeks from flower initiation to anthesis. Three phasesof pericarp differentiation are revealed: ring meristem formation;cell proliferation by anticlinal cell divisions; and a maturationphase characterized by periclinal cell division and differentiation.Both the stigma papillae and the transmitting tissue of thestyle originate by periclinal cell divisions. The receptivestigma is of the wet type and comprises many filamentous papillae,each composed of about 20 cells and covered by a loose cuticle.The stigma exudate shows similar cytochemical properties tothe material in the intercellular spaces of the transmittingtissue and is physically continuous with it. After pollinationand coincident with withering of the stigma, a single layerof stylar cells becomes suberized, forming a protective layerof cicatrix. Vitis vinifera, grape, pistil, development, histochemistry  相似文献   

8.
The development of leaves on apically stable, periclinal chimeras was studied in a number of dicot genera. The mutant cell layers of the shoot apex and the tissues derived from them were as active developmentally as the normal layers. Ontogeny was the same in these chimeras as in nonchimeras, and growth of their leaves can be outlined as follows. Formation of the buttress, the axis, and the lamina of simple dicot leaves were independent events. In each the first growth included derivatives of the apical layers, usually three in number, found in the apex of the shoot and the lateral buds. Most cell divisions in the outer layers (L-I and L-II) were anticlinal relative to the new structures. Therefore, in the proximal regions of the buttress, axis (petiole and midrib), and lamina, the derivative cells of L-I and L-II were usually present in single layers. The rest of the internal tissue was from L-III. As formation of the axis and the lamina proceeded, derivatives of L-II replaced L-III internally in the distal and marginal regions leaving cells of L-III behind. Both the determinate growth of leaves and the pattern of cell divisions at and near the leading edges of growth meant that no cells in the leaf were comparable to the initial cells of the shoot apex. As the lamina extended, there were extensive intercalary cell divisions, both anticlinal and periclinal, so that in any given region of a leaf the layers of internal cells were from either L-II or L-III. At any point along the axis, L-III participated or did not participate in laminar extension. At any given stage in laminar growth either of two sister cells in any internal layer divided either a few times or extensively. The extreme variability in direction and frequency of cell division during leaf development was under an overriding genetic control, which resulted in the normal or typical size, shape and thickness of leaves.  相似文献   

9.
The branches of successive orders of the inflorescence of Panicum miliaceum L. arise in the axils of the bracts of the branches of next lower order. Their initiation is evidenced by periclinal division of sub-hypodermal cells. The primordia of branches arise in initiation like a normal axillary bud. The floral histogenesis of Panicum miliaceum L. is similar to that of Triticum. Primordia of the spikelet, flower and stamen are initiated by the activity of the periclinal division of the sub-hypodermal cell or cells. Sometimes, periclinal divisions also occur in a few hypodermal cells during these primordial developments; such divisions are more frequent in the formation of the flower and stamen primordia than in the formation of the spikelet primordia. The periclinal division of the dermatogen ceils never occurs in the formation of these organs. Glumes and lemma are initiated in the periclinal division of the dermatogen and hypodermal cell or cells. The primordia of the palea, lodicule and carpel are initiated by means of the periclinal division in the dermatogen cell or cells. In the formation of the palea and carpel, periclinal divisions also occur in hypodermat cells, but their derivatives are protruding into the bases of the primordia and do not constitute the tissues of the palea and carpel. The growing point of the flower axis develops into the ovule. The integuments arise from the periclinal division of dermatogen cells. The periclinal division of dermatogen cells is characteristic of the initiation of the phylloid organs in the Gramineae.  相似文献   

10.
BACKGROUND AND AIMS: Sections leaves of Ficus rubiginosa 'Variegata' show that it is a chimera with a chlorophyll deficiency in the second layer of the leaf meristem (GWG structure). Like other Ficus species, it has a multiseriate epidermis on the adaxial and abaxial sides of the leaf, formed by periclinal cell divisions as well as anticlinal divisions. The upper and lower laminae of the leaf often exhibit small dark and light green patches of tissue overlying internal leaf tissue. METHODS: The distribution of chlorophyll in transverse sections of typical leaves was determined by fluorescence microscopy. KEY RESULTS: Patches of dark and light green tissue which arise in the otherwise colourless palisade and spongy mesophyll tissue in the entire leaf are due to further cell divisions arising from the bundle sheath which is associated with major vascular bundles or from the green multiseriate epidermis. Leaves produced in winter exhibit more patches of green tissue than leaves which expand in mid-summer. Many leaves produced in summer have no spotting and appear like a typical GWG chimera. There is a strong relationship between the number of patches on the adaxial side of leaves and the number on the abaxial side, showing that the cell division in upper and lower layers of leaves is strongly coordinated. In both winter and summer, there are fewer patches on the abaxial side of leaves compared with the adaxial side, indicating that periclinal and anticlinal cell divisions from the outer meristematic layer are less frequent in the lower layers of leaf tissue. Most of the patches are small (<1 mm in longest dimension) and thus the cell divisions which form them occur late in leaf development. Leaves which exhibit large patches generally have them on both sides of the leaves. CONCLUSION: In this cultivar, the outer meristematic layer appears to form vascular bundle sheaths and associated internal leaf tissue in the entire leaf lamina.  相似文献   

11.
During meiosis of the microsporocyte of Ginkgo biloba L., the nucleoids, after going through a serios of regular dynamic changes, had primarily established an axial polarity from the proximal face to the distal face of the cell. In the consequent germination, the microspore went through three consecutive polar periclinal mitotic divisions, which may be considered as further intensifying the primary polarity. In terms of structural change, lacking of plasmodesmas in the walls between the daughter cells, may set forth in isolating all the daughter cells in which fine differentiation took place. The anticlinal ring-like division observed in the generative cell might play an important role in polarity regulation in the male gametophyte, eventually leading to the anticlinal division in the spennatogenous cell to produce two back-to-back positioned spermatozoids.  相似文献   

12.
The primary root of Arabidopsis has a simple cellular organisation. The fixed radial cell pattern results from stereotypical cell divisions that occur in the meristem. Here we describe the characterisation of schizoriza (scz), a mutant with defective radial patterning. In scz mutants, the subepidermal layer (ground tissue) develops root hairs. Root hairs normally only form on epidermal cells of wild-type plants. Moreover, extra periclinal divisions (new wall parallel to surface of the root) occur in the scz root resulting in the formation of supernumerary layers in the ground tissue. Both scarecrow (scr) and short root (shr) suppress the extra periclinal divisions characteristic of scz mutant roots. This results in the formation of a single layered ground tissue in the double mutants. Cells of this layer develop root hairs, indicating that mis-specification of the ground tissue in scz mutants is uncoupled to the cell division defect. This suggests that during the development of the ground tissue SCZ has two distinct roles: (1) it acts as a suppressor of epidermal fate in the ground tissue, and (2) it is required to repress periclinal divisions in the meristem. It may act in the same pathway as SCR and SHR.  相似文献   

13.
银杏雄配子体发生发育过程中的细胞分裂   总被引:7,自引:0,他引:7  
银杏(GinkgobilobaL.)小孢子母细胞减数分裂中,拟核经过规律性的变化后,初步建立了由近极面到远极面间的轴向极性,因而,雄配子体萌发时的3次分裂都是典型的极性平周分裂;这些极性平周分裂很可能是对原有极性的进一步加强;在结构上,各子细胞间的细胞壁缺少胞间连丝,因而,这些细胞壁可能起着使子细胞孤立化的作用,从而完成雄配子体中各细胞间的精细分化。生殖细胞的分裂很可能是斜背式环形分裂(anticlinalringlikedivision),这种分裂可能是对最初极性方向的重大调整。结果,精原细胞的分裂方向为垂周分裂,产生两个背靠背排列的精子。  相似文献   

14.
Abstract

Cyto-histological changes accompanying the formation of adventitious buds in excised cotyledons of Lactuca sativa were studied during the first 12 days after planting in vitro. Prospective proliferating cells can first be recognized, already on the first day after planting, by a marked increase in nuclear and nucleolar volumes, followed on the second day by a burst of cell divisions involving particularly mesophyll cells. Then lignified elements develop together with meristematic center, forming a callus-like tissue in the inner part of the cotyledons. At the third day of culture, the epidermal cells start to divide with a periclinal wall followed by an anticlinal division. In the following days of culture the epidermal cells, which divide mainly with periclinal walls, form layers of cells below the surface, gradually filling up the intercellular spaces. From the 8th day on, the buds protude above the surface and develops into shoots. These results are discussed in relation to DNA content of nuclei of Lactuca sativa cotyledons and to the time course of cell division and tracheary element formation. The very regular sequence of changes associated with the initiation and development of the bud makes the in vitro culture of Lactuca cotyledons an appropriate System for histochemical and biochemical studies.  相似文献   

15.
Leaves of Humulus lupulus possess two types of glandular trichomes: - peltate (lupulin) and bulbous.
Peltate trichomes are formed from a protodermal cell by two anticlinal divisions in perpendicular planes, followed by two periclinal ones that give rise to the initials of the head cells, the basal and the stalk cells. Head cells divide successively in radial and irregular planes. Fully developed peltate trichomes are built of a glandular head consisting of 30 to 72 cells, four stalk cells and four basal cells.
Bulbous trichomes are also formed from a protodermal cell by an anticlinal division followed by two periclinal ones that produce the initials of the glandular head cells, and the basal and stalk cells. Fully developed bulbous trichomes consist of four (occasionally eight) head glandular cells, two stalk cells and two basal cells.
The density of peltate trichomes decreases with the expansion of the leaves.
Both peltate and bulbous trichomes secrete essential oils. Peltate trichomes are the preferential site for the synthesis of bitter resins. Tannic acids could not be detected histochemically either in peltate or in bulbous trichomes. Both types of trichomes produce secretion that accumulates in the subcuticular space, being released, in the case of bulbous trichomes, by rupture of the cuticle.  相似文献   

16.
Kessler S  Townsley B  Sinha N 《Plant physiology》2006,141(4):1349-1362
Plant development requires regulation of both cell division and differentiation. The class 1 KNOTTED1-like homeobox (KNOX) genes such as knotted1 (kn1) in maize (Zea mays) and SHOOTMERISTEMLESS in Arabidopsis (Arabidopsis thaliana) play a role in maintaining shoot apical meristem indeterminacy, and their misexpression is sufficient to induce cell division and meristem formation. KNOX overexpression experiments have shown that these genes interact with the cytokinin, auxin, and gibberellin pathways. The L1 layer has been shown to be necessary for the maintenance of indeterminacy in the underlying meristem layers. This work explores the possibility that the L1 affects meristem function by disrupting hormone transport pathways. The semidominant Extra cell layers1 (Xcl1) mutation in maize leads to the production of multiple epidermal layers by overproduction of a normal gene product. Meristem size is reduced in mutant plants and more cells are incorporated into the incipient leaf primordium. Thus, Xcl1 may provide a link between L1 division patterns, hormonal pathways, and meristem maintenance. We used double mutants between Xcl1 and dominant KNOX mutants and showed that Xcl1 suppresses the Kn1 phenotype but has a synergistic interaction with gnarley1 and rough sheath1, possibly correlated with changes in gibberellin and auxin signaling. In addition, double mutants between Xcl1 and crinkly4 had defects in shoot meristem maintenance. Thus, proper L1 development is essential for meristem function, and XCL1 may act to coordinate hormonal effects with KNOX gene function at the shoot apex.  相似文献   

17.
In leaf discs ofSaintpaulia ionantha xconfusa hybrid (cv. Virginia) cultured on shoot-inducing medium, periclinal divisions were initiated in epidermal cells 3–5 days after explant isolation. This timing coincided with the time for competence acquisition determined in tissue-transfer experiments. Some of the daughter cells from periclinal divisions formed the target cells which divided both anticlinally and periclinally to form cell division centers (meristemoids), precursors of adventitious shoots. The target cells were not morphologically distinct from other epidermal cells at the light microscope level. It is suggested that the periclinal divisions in epidermal cells represent the dedifferentiation phase during which target (competent) cells are formed. Once the cells have acquired the ability to divide periclinally, both dedifferentiation and shoot induction occur in the presence of exogenous plant hormones.Abbreviations SIM Shoot-inducing medium  相似文献   

18.
The sequence of events in the functional body pattern formation during the somatic embryo development in cowpea suspensions is described under three heads. Early stages of somatic embryogenesis were characterized by both periclinal and anticlinal cell divisions. Differentiation of the protoderm cell layer by periclinal divisions marked the commencement of somatic embryogenesis. The most critical events appear to be the formation of apical meristems, establishment of apical-basal patterns of symmetry, and cellular organization in oblong-stage somatic embryo for the transition to torpedo and cotyledonary-stage somatic embryos. Two different stages of mature embryos showing distinct morphology, classified based on the number of cotyledons and their ability to convert into plantlets, were visualized. Repeated mitotic divisions of the sub-epidermal cell layers marked the induction of proembryogenic mass (PEM) in the embryogenic calli. The first division plane was periclinally-oriented, the second anticlinally-oriented, and the subsequent division planes appeared in any direction, leading to clusters of proembryogenic clumps. Differentiation of the protoderm layer marks the beginning of the structural differentiation in globular stage. Incipient procambium formation is the first sign of somatic embryo transition. Axial elongation of inner isodiametric cells of the globular somatic embryo followed by the change in the growth axis of the procambium is an important event in oblong-stage somatic embryo. Vacuolation in the ground meristem of torpedo-stage embryo begins the process of histodifferentiation. Three major embryonic tissue systems; shoot apical meristem, root apical meristem, and the differentiation of procambial strands, are visible in torpedo-stage somatic embryo. Monocotyledonary-stage somatic embryo induced both the shoot apical meristem and two leaf primordia compared to the ansiocotyledonary somatic embryo.  相似文献   

19.
Using simple arithmetical formulae, it is shown that, when the meristematic initial cells of a growing plant organ are arranged in a ring, the cellular dimensions predict the relative frequencies of anticlinal and periclinal divisions which these cells undergo. The pattern of cell file branching which appears during the course of development, and which is predicted by this mathematical model, is validated using data pertaining to the numbers and dimensions of initial cells within the secondary vascular cambium of hybrid aspen trees. Data pertaining to a second, simpler set of initial cells which comprises the outer cellular ring of the thallus of the alga Coleochaete orbicularis, and from which all the radial cell files of the circular disc-like thallus are descended, have also been used for model validation. Combining the mathematical approach to division frequencies with data of actual cell sizes permits inferences about the course of the increase of the number of cell files (generated by the anticlinal divisions) and the number of cells within each file (generated by the periclinal divisions) during the earlier stages of secondary tissue or thallus development, and also about how they will develop at future stages. The question whether or not cell division patterns conform to the geometry of the system in which the cells are embedded is also discussed.  相似文献   

20.
Six different homoplastidic periclinal chimeras of tobacco carrying the plastogene DP1 were selected after somatic segregation in heteroplastidic seedlings. Direct observation of the plane of division in epidermal cells of young leaves, and the number and size of sub-epidermal green spots on leaves with the Green-White-White (G-W-W) pattern of variegation, indicated that the ratio of periclinal to anticlinal divisions in L-I during development of the lamina was 1:3100. The number of green and white seedlings obtained from the different chimeral branches indicated a similar frequency of periclinal divisions in development of the ovary. The arrangement of green and white tissue in mature leaves of the various chimeral types indicated the extent of participation by the three apical layers in the initiation of the buttress, development of the axis, and formation of the lamina. During development of the lamina there must be three independent initial-groups present. L-I and L-II initials remain marginal, but early in the growth of the lamina the leading edge of tissue derived from L-III becomes separated from the submarginal (L-II) initials by the products of frequent periclinal divisions of the L-II initials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号