首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The taxonomic position of a thermoacidophilic crenarchaeote Sulfolobus sp. strain 7, previously isolated from the Beppu Hot Springs in the geothermal area of Kyushu Island, Japan, was investigated by cloning and sequencing, by phylogenetic analysis of the 16S rRNA gene sequence, by DNA-DNA homology with similar species, and by biochemical characterization of the isolate. This isolate is an obligate aerobe and grows optimally at 80 degrees C and pH2.5-3 under aerobic and chemoheterotrophic growth conditions by aerobic respiration rather than simple fermentation. In conjunction with the phenotypic properties, the present phylogenetic analysis based on the 16S rRNA gene sequence and DNA-DNA hybridization experiments indicate that this isolate is related to the described Sulfolobus taxon and should be considered a novel species of the genus. We propose that this isolate is a novel species of the genus Sulfolobus that we name Sulfolobus tokodaii sp. nov. The type strain is strain 7 (JCM 10545).  相似文献   

2.
A novel Gram-positive bacterium, designated SYB2T, was isolated from wastewater reservoir sediment, and a polyphasic taxonomic study was conducted based on its morphological, physiological, and biochemical features, as well as the analysis of its 16S rRNA gene sequence. During the phylogenetic analysis of the strain SYB2T, results of a 16S rRNA gene sequence analysis placed this bacterium in the genus Arthrobacter within the family Micrococcaceae. SYB2T and Arthrobacter protophormiae ATCC 19271T, the most closely related species, both exhibited a 16S rRNA gene sequence similarity of 98.99%. The genomic DNA G+C content of the novel strain was found to be 62.0 mol%. The predominant fatty acid composition was anteiso-C15:0, anteiso-C17:0, iso-C16:0, and iso-C15:0. Analysis of 16S rRNA gene sequences and DNA-DNA relatedness, as well as physiological and biochemical tests, showed genotypic and phenotypic differences between strain SYB2T and other Arthrobacter species. The type strain of the novel species was identified as SYB2T (= KCTC 19291T= DSM 19449T).  相似文献   

3.
An extremely halophilic archaeon, previously named as Haloferax sp. strain Aa 2.2 or "Haloferax alicantei" that has been extensively used for genetic studies with halobacteria, was taxonomically characterized by using phenotypic tests (including morphological, physiological, biochemical and nutritional features), DNA-DNA hybridization and 16S rRNA sequence phylogenetic analysis. This organism was isolated in 1986 by Torreblanca et al. from a pond of a Spanish saltern located in Alicante. The cells were pleomorphic, Gram negative and grew optimally at 25% NaCl. The polar lipid composition was similar to that of species of the genus Haloferax. The DNA G+C content of this strain was 64.5 mol%. Phylogenetic analysis based on 16S rRNA sequence comparison confirmed that this archaeon is a member of the genus Haloferax and was most closely related to Haloferax volcanii. DNA-DNA hybridization between strain Aa 2.2 and the type strain of all named species of the genus Haloferax revealed low levels of relatedness (25-2%), supporting the placement of this organism in a new species. On the basis of the phenotypic characteristics, molecular data and phylogenetic analysis we propose to name strain Aa 2.2 as a new species, Haloferax lucentensis sp. nov. The type strain is Aa 2.2 (=JCM 9276=NCIMB 13854=CIP 107410=DSM 14919=CECT 5871=CCM 7023).  相似文献   

4.
A Gram-positive, aerobic or facultative anaerobic, motile, spore-forming bacterial strain, designated Gsoil 1638T, was isolated from a soil sample of a ginseng field in Pocheon province (South Korea), and was characterized taxonomically by using a polyphasic approach. It grew well on nutrient agar medium, utilized a fairly narrow spectrum of carbon sources and tolerated 10% NaCl. The isolate was positive for catalase and oxidase tests but negative for the degradation of macromolecules such as casein, collagen, starch, chitin, CM-cellulose, xylan and DNA. The G + C content of the genomic DNA was 50.7 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were anteiso-C15:0 (44%) and C16:0 (25%). Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 1638T fell within the radiation of the cluster comprising Paenibacillus species and joined Paenibacillus anaericanus DSM 15890T with a bootstrap value of 100%. These two strains shared 99.5% 16S rRNA gene sequence similarity with each other. The phylogenetic distance from any other validly described species within the genus Paenibacillus was less than 96.2%. DNA-DNA relatedness value between strain Gsoil 1638T and its closest phylogenetic neighbor, Paenibacillus anaericanus, was 62%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1638T (= KCTC 13931T = LMG 23406T = CCUG 52472T) was classified in the genus Paenibacillus as the type strain of a novel species, for which the name Paenibacillus ginsengisoli sp. nov. is proposed.  相似文献   

5.
A non-motile and rod shaped bacterium, designated strain B1(T), was isolated from forest soil at Mt. Baekwoon, Republic of Korea. Cells were Gram-negative, catalase-positive, and oxidase-negative. The major fatty acids were 9-octadecenoic acid (C(18:1) omega9c; 42%) and hexadecanoic acid (C(16:0); 25.9%) and summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16:1) omega7c; 10.0%). The DNA G+C content was 44.1 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain B1(T) formed a lineage within the genus Acinetobacter and was closely related to A. baylyi DSM 14961(T) (98.6% sequence similarity), followed by A. baumannii DSM 30007(T) (97.4%), A. calcoaceticus DSM 30006(T) (97.0%) and 3 genomic species (96.8 approximately 7.6%). Phenotypic characteristics, gyrB gene sequence analysis and DNA-DNA relatedness data distinguished strain B1(T) from type strains of A. baylyi, A. baumannii, and A. calcoaceticus. On the basis of the evidence presented in this study, strain B1(T) represents a novel species of the genus Acinetobacter, for which the name Acinetobacter soli sp. nov. is proposed. The type strain is B1(T) (= KCTC 22184(T)= JCM 15062(T)).  相似文献   

6.
A bacterial strain, designated KMM 6244T, was isolated from the sea urchin Strongylocentrotus intermedius and subjected to a polyphasic taxonomic investigation. The bacterium was found to be heterotrophic, aerobic, non-motile and spore-forming. Comparative phylogenetic analysis based on 16S rRNA gene sequencing placed the marine isolate in the genus Bacillus. The nearest neighbor of strain KMM 6244T was Bacillus decolorationis LMG 19507T with a 16S rRNA gene sequence similarity of 98.0%. Sequence similarities with the other recognized Bacillus species were less than 96.0%. The results of the DNA–DNA hybridization experiments revealed a low relatedness (37%) of the novel isolate with the type strain of B. decolorationis LMG 19507T. Strain KMM 6244T grew at 4–45°C and with 0–12% NaCl. It produced catalase and oxidase and hydrolyzed aesculin, casein, gelatin and DNA. The predominant fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and iso-C14:0. The DNA G + C content was 39.4 mol%. A combination of phylogenetic, genotypic and phenotypic data clearly indicated that strain KMM 6244T represents a novel species in the genus Bacillus, for which the name Bacillus berkeleyi sp. nov. is proposed. The type strain is KMM 6244T (KCTC 12718T = LMG 26357T).  相似文献   

7.
A pink-pigmented bacterium, designated SW08-7T was isolated from the drinking water of a water purifier. Cells were Gram-negative, rod-shaped, strictly aerobic, and non-spore-forming. It grew optimally at 25°C, pH 6∼7. Phylogenese analysis based on 16S rRNA gene sequence showed that strain SW08-7T belongs to the genus Methylobacterium. The highest 16S rRNA gene sequence similarities were found to Methylobacterium mesophilicum JCM 2829T (96.9%), Methylobacterium brachiatum B0021T (96.9%), Methylobacterium phyllosphaerae CBMB27T (96.6%), Methylobacterium radiotolerans JCM 2831T (96.6%), and Methylobacterium hispanicum GP34T (96.5%). DNA-DNA hybridization experiment revealed low-level (28.5%) of DNA-DNA relatedness between strain SW08-7T and Methylobacterium hispanicum. The genomic DNA G+C content was 68.9 mol% and the major isoprenoid quinone was Q-10. The major cellular fatty acid of strain SW08-7T was C18:1 ω7c (79.8±2.1%). Results of phylogenetic, phenotypic, and biochemical analyses revealed that strain SW08-7T could be classified as representing a novel species of genus Methylobacterium, for which the name Methylobacterium dankookense sp. nov. is proposed. The type strain is SW08-7T (=KCTC 22512T =DSM 224151).  相似文献   

8.
A new representative of neutrophilic iron-oxidizing bacteria was isolated from the iron-containing sediments of the brackish low-temperature iron-rich spring of the Staraya Russa Resort (Novgorod region, Russia). The cells of strain Hf1 were thin, slightly curved rods, motile by means of a single polar flagellum. The bacterium reproduced by binary division and was capable of producing rosettes. Optimal growth was observed within the pH range of 6.2–8.5 (with an optimum at 7.5), at 9–38°C (with an optimum at 30°C), and in the salinity range of 0.1–8.5% NaCl (with an optimum at 1%). The organism was a facultative anaerobe. The strain was capable of mixotrophic and organoheterotrophic growth. Fe(II) oxidation occurred under anaerobic conditions via reduction of NO3 and N2O, or under microaerobic conditions with oxygen as an electron acceptor. According to phylogenetic analysis based on the comparison of the 16S rRNA gene sequences, the strain was closest to the organotrophic marine bacterium Hoeflea phototrophica (98.5% similarity). The level of DNA-DNA homology with the type species of the genus Hoeflea was 19%. The DNA G + C base content was 57.5 mol %. According to its phenotypic and chemotaxonomic properties, as well as to the results of phylogenetic analysis, strain Hf1 was classified into the genus Hoeflea of the family Phyllobacteriaceae, order Rhizobiales of the phylum Alphaproteobacteria as a novel species, Hoeflea siderophila sp. nov. The type strain is Hf1T (=DSM 21587 = VKM A7094). The GenBank accession number for the 16S rRNA gene sequences of strain Hf1T is EU670237.  相似文献   

9.
A strictly aerobic, red-pigmented, non-motile, catalase- and oxidase-positive, Gram-staining-negative bacterium, designated strain CNURIC011T, was isolated from seawater off the coast of Jeju Island in Korea. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain CNURIC011T belongs to the genus Aquimarina in the family Flavobacteriaceae. 16S rRNA gene sequence analysis revealed that the close relatives of the novel strain are Aquimarina latercula ATCC 23177T, Aquimarina marcrocephali JAMB N27T, Aquimarina intermedia KMM 6258T, Aquimarina muelleri KMM 6020T, and Aquimarina brevivitae SMK-19T, with sequence similarities of 97.6, 96.6, 96.0, 95.6, and 94.2%, respectively. DNA-DNA hybridization revealed that the level of relatedness between strain CNURIC011T and Aquimarina latercula ATCC 23177T (=KCTC 2912T) was 4.9%. The DNA G+C content was 35.8 mol% and the major respiratory quinone was MK-6. The major fatty acids were iso-C15:0 (14.9%), C15:0 (13.9%), iso-C17:0 3-OH (12.6%), iso-C15:1 G (7.3%), and iso-C17:1 ω9c (7.2%). On the basis of phenotypic, phylogenetic, and genotypic data, strain CNURIC011T represents a novel species within the genus Aquimarina, for which the name Aquimarina litoralis sp. nov. is proposed. The type strain is CNURIC011T (=KCTC 22614T =JCM 15974T).  相似文献   

10.
Four gram-negative, aerobic, motile, non-spore, forming rods with a wide pH and temperature range for growth (pH 7.0–11.0, optimum pH 8.0; 20–45°C, optimum 28°C) strains were isolated from root nodules of Sphaerophysa salsula and characterized by means of a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the four strains formed a new lineage related to the genus Rhizobium and the sequence similarities between the isolate and the most related type strain Rhizobium giardinii was 96.5%. These strains also formed a distinctive group from the reference strains for defined Rhizobium species based on housekeeping gene sequences (atpD and recA), BOX-PCR fingerprinting, phenotypic features and symbiotic properties. The representative strain CCNWGS0238T has DNA-DNA relatedness of less than 33.4% with the most closely related species R. giardinii. It is therefore proposed as a new species, Rhizobium sphaerophysae sp. nov., with isolate CCNWGS0238T (=ACCC17498T = HAMBI3074T) as the type strain.  相似文献   

11.
A gram-negative, motile, straight to curved rod shaped, pink pigmented bacterium was isolated from a soil sample collected from the rhizosphere of an Indian medicinal plant, Nerium indicum (Chuvanna arali) and subjected to a detailed polyphasic taxonomic study. The strain, designated as IMTB-1969T, matched with most of the phenotypic and chemotaxonomic properties of the genus Pontibacter and represents a novel species. The major fatty acids of the strain were monounsaturated iso/anteiso branched C17 fatty acids (45.1%) and iso-C15:0 (16.5%). MK-7 was the predominant isoprenoid quinone. According to 16S rRNA gene sequence analysis, strain IMTB-1969T was indicated to belonged to the phylum Bacteroidetes and further phylogenetic analysis revealed that the strain IMTB-1969T belongs to the family Cytophagaceae and genus Pontibacter. The highest 16S rRNA gene sequence similarity was with Pontibacter korlensis CCTCC AB 206081T (97.2%) and lower sequence similarity was observed with other species in the genus Pontibacter (95.9–94.0%). DNA–DNA relatedness study of the strain IMTB-1969T confirmed that it represents a novel species. The G+C content of the genomic DNA was 52.2 (±0.5) mol%. The results of physiological and biochemical tests allowed the genotypic and phenotypic distinction of strain IMTB-1969T from its closest phylogenetic relatives. The strain IMTB-1969T should be classified as novel species of the genus Pontibacter, for which the name Pontibacter rhizosphera sp. nov. is proposed. The type strain is IMTB-1969T (=MTCC 10673T = DSM 24399T).  相似文献   

12.
A Gram-staining-negative, non-motile, curved rod-shaped, aerobic bacterium, designated S1-2-4T, was isolated from soil in Jeollabuk-do province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-4T was a member of the family Cytophagaceae and most closely related to ‘Spirosoma radiotolerans’ DG5A (97.2%), Spirosoma fluviale MSd3T (96.4%), and Spirosoma linguale DSM 74T (96.3%). The genomic DNA G + C content of strain S1-2-4T was 49.7 mol%. The major fatty acids were summed feature 3 (C16:1ω7c/C16:1ω6c), C16:1ω5c, and C16:0, and the major polar lipid was phosphatidylethanolamine. MK-7 was the predominant respiratory quinone. Phenotypic and chemotaxonomic data supported the affiliation of strain S1-2-4T with the genus Spirosoma. DNA-DNA hybridization between strain S1-2-4T and ‘Spirosoma radiotolerans’ showed relatively low DNA-DNA relatedness (31%). Strain S1-2-4T could be distinguished from its closest phylogenetic neighbors based on its phenotypic, genotypic, and chemotaxonomic features. Therefore, strain S1-2-4T represents a novel member of the genus Spirosoma, for which the name Spirosoma lituiforme sp. nov. is proposed. The type strain is S1-2-4T (= KCTC 52724T = JCM 32128T).  相似文献   

13.
A novel bacterium B9T was isolated from tidal flat sediment. Its morphology, physiology, biochemical features, and 16S rRNA gene sequence were characterized. Colonies of this strain are yellow and the cells are Gram-negative, rod-shaped, and do not require NaCl for growth. The 16S rRNA gene sequence similarity indicated that strain B9T is associated with the genus Lysobacter (≤ 97.2%), Xanthomonas (≤ 96.8%), Pseudomonas (≤ 96.7%), and Luteimonas (≤ 96.0%). However, within the phylogenetic tree, this novel strain shares a branching point with the species Luteimonas composti CC-YY255T (96.0%). The DNA-DNA hybridization experiments showed a DNA-DNA homology of 23.0% between strain B9T and Luteimonas mephitis B1953/27.1T. The G+C content of genomic DNA of the type strain is 64.7 mol% (SD, 1.1). The predominant fatty acids are iso-C11:0, iso-C15:0, iso-C16:0, iso-C17:0, iso-C17:0 ω9c, and iso-C11:0 3-OH. Combined analysis of the 16S rRNA gene sequences, fatty acid profile, and results from physiological and biochemical tests indicated that there is genotypic and phenotypic differentiation of the isolate from other Luteimonas species. For these reasons, strain B9T was proposed as a novel species, named Luteimonas aestuarii. The type strain of the new species is B9T (= KCTC 22048T, DSM 19680T).  相似文献   

14.
15.
Strain DCT-19T, representing a Gram-stain-positive, rodshaped, aerobic bacterium, was isolated from a native plant belonging to the genus Campanula on Dokdo, the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence showed that this strain was closely related to Paenibacillus amylolyticus NRRL NRS-290T (98.6%, 16S rRNA gene sequence similarity), Paenibacillus tundrae A10bT (98.1%), and Paenibacillus xylanexedens NRRL B-51090T (97.6%). DNADNA hybridization indicated that this strain had relatively low levels of DNA-DNA relatedness with P. amylolyticus NRRL NRS-290T (30.0%), P. xylanexedens NRRL B-51090T (29.0%), and P. tundrae A10bT (24.5%). Additionally, the genomic DNA G + C content of DCT-19T was 44.8%. The isolated strain grew at pH 6.0–8.0 (optimum, pH 7.0), 0–4% (w/v) NaCl (optimum, 0%), and a temperature of 15–45°C (optimum 25–30°C). The sole respiratory quinone in the strain was menaquinone-7, and the predominant fatty acids were C15:0 anteiso, C16:0 iso, and C16:0. In addition, the major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. Based on its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain DCT-19T is proposed as a novel species in the genus Paenibacillus, for which the name Paenibacillus seodonensis sp. nov. is proposed (=KCTC 43009T =LMG 30888T). The type strain of Paenibacillus seodonensis is DCT-19T.  相似文献   

16.
A polyphasic taxonomic approach was used to characterize a Gram-negative, non-motile bacterium, designated MJ15T, that was isolated from soil of a GS-Caltex Oil reservoir in Korea. As shown by comparative 16S rRNA gene sequence analysis, strain MJ15T belongs to genus Brevundimonas. The 16S rRNA gene sequence similarities ranged from 95.6–99.2% between strain MJ15T and validated representatives of the genus Brevundimonas. With respect to Brevundimonas species, strain MJ15T exhibited DNA-DNA relatedness values below 40.7%. The G+C content of the genomic DNA was 61.7 mol%. Strain MJ15T contained ubiquinone Q-10. The major fatty acids were C16:0 (27.7%), C19:0 cyclo ω8c (23.2%), summed feature 8 (containing C18:1 ω7c/C18:1 6c) (28.5%), and major hydroxyl fatty acid was C12:0 3OH (3.7%). Based upon its phenotypic and genotypic properties, as well as its phylogenetic distinctiveness, strain MJ15T (KCTC 22461T; JCM 16237T) should be classified in the genus Brevundimonas as the type strain of a novel species. The name Brevundimonas olei sp. nov. is proposed for this new species.  相似文献   

17.
A novel psychrotolerant, alkalitolerant bacterium, strain Ths, was isolated from a soil sample immersed in hot spring water containing hydrocarbons and grown on a chemically defined medium containing n-tetradecane as the sole carbon source. The isolate grew at 0 degrees C but not at temperatures higher than 45 degrees C; its optimum growth temperature was 27 degrees C. It grew in the pH range of 7-9. The strain utilized C(13)-C(30) n-alkane and fluorene at pH 9 and 4 degrees C. To our knowledge, this is the first report on the bacterium that utilizes a wide range of hydrocarbons at a high pH and a low temperature. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Ths is closely related to genomic species 6 ATCC 17979 (99.1% similarity), genomic species BJ13/TU14 ATCC 17905 (97.8% similarity), genomic species 9 ATCC 9957 (97.6% similarity) belonging to the genus Acinetobacter and to Acinetobacter calcoaceticus JCM 6842(T) (97.5% similarity). DNA-DNA hybridization revealed that the isolate has 62, 25, 18 and 19% relatedness, respectively, to genomic species 6 ATCC 17979, genomic species BJ13/TU14 ATCC 17905, genomic species 9 ATCC 9957 and A. calcoaceticus, respectively.  相似文献   

18.
A novel Gram-negative, catalase- and oxidase-positive, strictly aerobic, non spore-forming, rod-shaped bacterium, designated strain JSM 083058T, was isolated from non-saline forest soil in Hunan Province, China. Growth occurred with 0–8% (w/v) NaCl (optimum, 0.5–3%) at pH 6.0–10.0 (optimum, pH 7.0) and at 5–35°C (optimum, 25–30°C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 083058T fell within the cluster comprising species of the genus Sphingomonas, clustering with Sphingomonas aestuarii K4T, with which it shared highest 16S rRNA gene sequence similarity (99.2%). The chemotaxonomic properties of strain JSM 083058T were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was ubiquinone Q-10, and the major cellular fatty acids were summed feature 8 (C18:1ω7c/C18:1ω6c), C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c) and C17:1ω6c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. The genomic DNA G+C content of strain JSM 083058T was 65.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 083058T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas hunanensis sp. nov. is proposed. The type strain is JSM 083058T (=CCTCC AA 209011T = DSM 22213T).  相似文献   

19.
Three thermophilic strains of chemolithoautotrophic Fe(III)-reducers were isolated from mixed sediment and water samples (JW/KA-1 and JW/KA-2(T): Calcite Spring, Yellowstone N.P., WY, USA; JW/JH-Fiji-2: Savusavu, Vanu Levu, Fiji). All were Gram stain positive rods (approximately 0.5 x 1.8 microm). Cells occurred singly or in V-shaped pairs, and they formed long chains in complex media. All utilized H(2) to reduce amorphous iron (III) oxide/hydroxide to magnetite at temperatures from 50 to 75 degrees C (opt. approximately 73 degrees C). Growth occurred within the pH(60C) range of 6.5-8.5 (opt. pH(60C) 7.1-7.3). Magnetite production by resting cells occurred at pH(60C) 5.5-10.3 (opt. 7.3). The iron (III) reduction rate was 1.3 mumol Fe(II) produced x h(-1) x ml(-1) in a culture with 3 x 10(7) cells, one of the highest rates reported. In the presence or absence of H(2), JW/KA-2(T) did not utilize CO. The G + C content of the genomic DNA of the type strain is 52.7 +/- 0.3 mol%. Strains JW/KA-1 and JW/KA-2(T) each contain two different 16S rRNA gene sequences. The 16S rRNA gene sequences from JW/KA-1, JW/KA-2(T), or JW/JH-Fiji-2 possessed >99% similarity to each other but also 99% similarity to the 16S rRNA gene sequence from the anaerobic, thermophilic, hydrogenogenic CO-oxidizing bacterium 'Carboxydothermus restrictus' R1. DNA-DNA hybridization between strain JW/KA-2(T) and strain R1(T) yielded 35% similarity. Physiological characteristics and the 16S rRNA gene sequence analysis indicated that the strains represent two novel species and are placed into the novel genus Thermolithobacter within the phylum 'Firmicutes'. In addition, the levels of 16S rRNA gene sequence similarity between the lineage containing the Thermolithobacter and well-established members of the three existing classes of the 'Firmicutes' is less than 85%. Therefore, Thermolithobacter is proposed to constitute the first genus within a novel class of the 'Firmicutes', Thermolithobacteria. The Fe(III)-reducing Thermolithobacter ferrireducens gen. nov., sp. nov. is designated as the type species with strain JW/KA-2(T) (ATCC 700985(T), DSM 13639(T)) as its type strain. Strain R1(T) is the type strain for the hydrogenogenic, CO-oxidizing Thermolithobacter carboxydivorans sp. nov. (DSM 7242(T), VKM 2359(T)).  相似文献   

20.
A Gram-positive, non-pigmented, rod-shaped, diazotrophic bacterial strain, designated SC-N012T, was isolated from rhizosphere soil of sugarcane and was subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Bacillus. Sequence analysis of the 16S rRNA gene of SC-N012T revealed the closest match (98.9% pair wise similarity) with Bacillus clausii DSM 8716T. However, DNA–DNA hybridization experiments indicated low levels of genomic relatedness (32%) with this strain. The major components of the fatty acid profile are iso-C15:0, anteiso-C15:0, iso-C17:0 and anteiso-C17:0. The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. The G+C content of the genomic DNA is 43.0 mol%. The lipids present in strain SC-N012T are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and two unknown phospholipids. Their predominant respiratory quinone was MK-7. Studies of DNA-DNA relatedness, morphological, physiological and chemotaxonomic analyses and phylogenetic data based on 16S rRNA gene sequencing allowed strain SC-N012T to be described as members of novel species of the genus Bacillus, for which the name Bacillus rhizosphaerae sp. nov. is proposed. The type strain is SC-N012T (=DSM 21911T = NCCB 100267T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号