首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microbial symbionts form abundant and diverse components of marine sponge holobionts, yet the ecological and evolutionary factors that dictate their community structure are unresolved. Here, we characterized the bacterial symbiont communities of three sympatric host species in the genus Ircinia from the NW Mediterranean Sea, using electron microscopy and replicated 16S rRNA gene sequence clone libraries. All Ircinia host species harbored abundant and phylogenetically diverse symbiont consortia, comprised primarily of sequences related to other sponge-derived microorganisms. Community-level analyses of bacterial symbionts revealed host species-specific genetic differentiation and structuring of Ircinia-associated microbiota. Phylogenetic analyses of host sponges showed a close evolutionary relationship between Ircinia fasciculata and Ircinia variabilis, the two host species exhibiting more similar symbiont communities. In addition, several bacterial operational taxonomic units were shared between I.?variabilis and Ircinia oros, the two host species inhabiting semi-sciophilous communities in more cryptic benthic habitats, and absent in I.?fasciculata, which occurs in exposed, high-irradiance habitats. The generalist nature of individual symbionts and host-specific structure of entire communities suggest that: (1) a 'specific mix of generalists' framework applies to bacterial symbionts in Ircinia hosts and (2) factors specific to each host species contribute to the distinct symbiont mix observed in Ircinia hosts.  相似文献   

2.
The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26 degrees C. In contrast, strains of V. logei grew faster at 18 degrees C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26 degrees C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26 degrees C, whereas strains of V. logei were present in greater concentrations at 18 degrees C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity.  相似文献   

3.
Here, we describe the draft genome sequence of Vibrio fischeri SR5, a squid symbiotic isolate from Sepiola robusta in the Mediterranean Sea. This 4.3-Mbp genome sequence represents the first V. fischeri genome from an S. robusta symbiont and the first from outside the Pacific Ocean.  相似文献   

4.
Marine microbes encounter a myriad of biotic and abiotic factors that can impact fitness by limiting their range and capacity to move between habitats. This is especially true for environmentally transmitted bacteria that cycle between their hosts and the surrounding habitat. As geologic history, biogeography, and other factors such as water temperature, salinity, and physical barriers can inhibit bacterial movement to novel environments, we chose to examine the genetic architecture of Euprymna albatrossae (Mollusca: Cephalopoda) and their Vibrio fischeri symbionts in the Philippine archipelago using a combined phylogeographic approach. Eleven separate sites in the Philippine islands were examined using haplotype estimates that were examined via nested clade analysis to determine the relationship between E. albatrossae and V. fischeri populations and their geographic location. Identical analyses of molecular variance (AMOVA) were used to estimate variation within and between populations for host and symbiont genetic data. Host animals demonstrated a significant amount of variation within island groups, while symbiont variation was found within individual populations. Nested clade phylogenetic analysis revealed that hosts and symbionts may have colonized this area at different times, with a sudden change in habitat. Additionally, host data indicate restricted gene flow, whereas symbionts show range expansion, followed by periodic restriction to genetic flow. These differences between host and symbiont networks indicate that factors “outside the squid” influence distribution of Philippine V. fischeri. Our results shed light on how geography and changing environmental factors can impact marine symbiotic associations at both local and global scales.  相似文献   

5.
Complex microbiomes reside in marine sponges and consist of diverse microbial taxa, including functional guilds that may contribute to host metabolism and coastal marine nutrient cycles. Our understanding of these symbiotic systems is based primarily on static accounts of sponge microbiota, while their temporal dynamics across seasonal cycles remain largely unknown. Here, we investigated temporal variation in bacterial symbionts of three sympatric sponges (Ircinia spp.) over 1.5 years in the northwestern (NW) Mediterranean Sea, using replicated terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of bacterial 16S rRNA gene sequences. Bacterial symbionts in Ircinia spp. exhibited host species-specific structure and remarkable stability throughout the monitoring period, despite large fluctuations in temperature and irradiance. In contrast, seawater bacteria exhibited clear seasonal shifts in community structure, indicating that different ecological constraints act on free-living and on symbiotic marine bacteria. Symbiont profiles were dominated by persistent, sponge-specific bacterial taxa, notably affiliated with phylogenetic lineages capable of photosynthesis, nitrite oxidation, and sulfate reduction. Variability in the sponge microbiota was restricted to rare symbionts and occurred most prominently in warmer seasons, coincident with elevated thermal regimes. Seasonal stability of the sponge microbiota supports the hypothesis of host-specific, stable associations between bacteria and sponges. Further, the core symbiont profiles revealed in this study provide an empirical baseline for diagnosing abnormal shifts in symbiont communities. Considering that these sponges have suffered recent, episodic mass mortalities related to thermal stresses, this study contributes to the development of model sponge-microbe symbioses for assessing the link between symbiont fluctuations and host health.  相似文献   

6.
Associations between environmentally transmitted symbionts and their hosts provide a unique opportunity to study the evolution of specificity and subsequent radiation of tightly coupled host-symbiont assemblages [3, 8, 24]. The evidence provided here from the environmentally transmitted bacterial symbiont Vibrio fischeri and its sepiolid squid host (Sepiolidae: Euprymna) demonstrates how host-symbiont specificity can still evolve without vertical transmission of the symbiont [1]. Infection by intraspecific V. fischeri symbionts exhibited preferential colonization over interspecific V. fischeri symbionts, indicating a high degree of specificity for the native symbiotic strains. Inoculation with symbiotic bacteria from other taxa (monocentrid fish and loliginid squids) produced little or no colonization in two species of Euprymna, despite their presence in the same or similar habitats as these squids. These findings of host specificity between native Vibrios and sepiolid squids provides evidence that the presence of multiple strains of symbionts does not dictate the composition of bacterial symbionts in the host.  相似文献   

7.
The distribution, host associations, and phylogenetic relationships of the unicellular cyanobacterial symbionts of selected marine sponges were investigated with direct 16s rDNA sequencing. The results indicate that the symbionts of the marine sponges Aplysina aerophoba, Ircinia variabilis, and Petrosia ficiformis from the Mediterranean, four Chondrilla species from Australia and the Mediterranean, and Haliclona sp. from Australia support a diversity of symbionts comprising at least four closely related species of Synechococcus. These include the symbionts presently described as Aphanocapsa feldmannii from P. ficiformis and Chondrilla nucula. A fifth symbiont from Cymbastela marshae in Australia is an undescribed symbiont of sponges, related to Oscillatoria rosea. One symbiont, Candidatus Synechococcus spongiarum, was found in diverse sponge genera in the Mediterranean Sea and the Indian, Pacific, and Southern oceans, whereas others were apparently more restricted in host association and distribution. These results are discussed in terms of the biodiversity and biogeographic distributions of cyanobacterial symbionts.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

8.
Marine sponges often harbor photosynthetic symbionts that may enhance host metabolism and ecological success, yet little is known about the factors that structure the diversity, specificity, and nature of these relationships. Here, we characterized the cyanobacterial symbionts in two congeneric and sympatric host sponges that exhibit distinct habitat preferences correlated with irradiance: Ircinia fasciculata (higher irradiance) and Ircinia variabilis (lower irradiance). Symbiont composition was similar among hosts and dominated by the sponge-specific cyanobacterium Synechococcus spongiarum. Phylogenetic analyses of 16S-23S rRNA internal transcribed spacer (ITS) gene sequences revealed that Mediterranean Ircinia spp. host a specific, novel symbiont clade ("M") within the S. spongiarum species complex. A second, rare cyanobacterium related to the ascidian symbiont Synechocystis trididemni was observed in low abundance in I. fasciculata and likewise corresponded to a new symbiont clade. Symbiont communities in I. fasciculata exhibited nearly twice the chlorophyll a concentrations of I. variabilis. Further, S. spongiarum clade M symbionts in I. fasciculata exhibited dense intracellular aggregations of glycogen granules, a storage product of photosynthetic carbon assimilation rarely observed in I. variabilis symbionts. In both host sponges, S. spongiarum cells were observed interacting with host archeocytes, although the lower photosynthetic activity of Cyanobacteria in I. variabilis suggests less symbiont-derived nutritional benefit. The observed differences in clade M symbionts among sponge hosts suggest that ambient irradiance conditions dictate symbiont photosynthetic activity and consequently may mediate the nature of host-symbiont relationships. In addition, the plasticity exhibited by clade M symbionts may be an adaptive attribute that allows for flexibility in host-symbiont interactions across the seasonal fluctuations in light and temperature characteristic of temperate environments.  相似文献   

9.
Research on sponge microbial assemblages has revealed different trends in the geographic variability and specificity of bacterial symbionts. Here, we combined replicated terminal-restriction fragment length polymorphism (T-RFLP) and clone library analyses of 16S rRNA gene sequences to investigate the biogeographic and host-specific structure of bacterial communities in two congeneric and sympatric sponges: Ircinia strobilina, two color morphs of Ircinia felix and ambient seawater. Samples were collected from five islands of the Bahamas separated by 80 to 400 km. T-RFLP profiles revealed significant differences in bacterial community structure among sponge hosts and ambient bacterioplankton. Pairwise statistical comparisons of clone libraries confirmed the specificity of the bacterial assemblages to each host species and differentiated symbiont communities between color morphs of I. felix. Overall, differences in bacterial communities within each host species and morph were unrelated to location. Our results show a high degree of symbiont fidelity to host sponge across a spatial scale of up to 400 km, suggesting that host-specific rather than biogeographic factors play a primary role in structuring and maintaining sponge–bacteria relationships in Ircinia species from the Bahamas.  相似文献   

10.
Bathymodiolin mussels occur at hydrothermal vents and cold seeps, where they thrive thanks to symbiotic associations with chemotrophic bacteria. Closely related genera Idas and Adipicola are associated with organic falls, ecosystems that have been suggested as potential evolutionary 'stepping stones' in the colonization of deeper and more sulphide-rich environments. Such a scenario should result from specializations to given environments from species with larger ecological niches. This study provides molecular-based evidence for the existence of two mussel species found both on sunken wood and bones. Each species specifically harbours one bacterial phylotype corresponding to thioautotrophic bacteria related to other bathymodiolin symbionts. Phylogenetic patterns between hosts and symbionts are partially congruent. However, active endocytosis and occurrences of minor symbiont lineages within species which are not their usual host suggest an environmental or horizontal rather than strictly vertical transmission of symbionts. Although the bacteria are close relatives, their localization is intracellular in one mussel species and extracellular in the other, suggesting that habitat choice is independent of the symbiont localization. The variation of bacterial densities in host tissues is related to the substrate on which specimens were sampled and could explain the abilities of host species to adapt to various substrates.  相似文献   

11.
1. Many insects host secondary bacterial symbionts that are known to have wide‐ranging effects on their hosts, from host‐plant use to resistance against natural enemies. This has been most widely studied in aphids, which have become a model system to study insect–bacteria interactions. 2. While there is an increasing understanding of the role of symbionts in aphids from controlled laboratory studies, we are only beginning to explore the impact of hosting these symbionts on eco‐evolutionary dynamics in natural systems. To date, many research groups have identified bacterial symbionts from various aphid species, providing us with a bank of literature on aphid–symbiont associations in natural populations. 3. The role of secondary symbionts in aphids is discussed, and the taxonomic and geographical distribution of symbionts among aphids are summarised, and the potential reasons for the patterns observed. The need to test for multiple symbiont species (and co‐infections) across many individuals and the whole distribution range of an aphid is highlighted, including sampling on all known host‐plant species. 4. It is further important also to consider variation within the symbiont, the aphid‐host and the surrounding community, e.g. host‐plants or the natural enemies, to understand how these have the potential to mediate aphid–symbiont interactions. 5. Finally, the knowledge gained from experimental work should now be used to understand the role of aphid secondary symbionts in field systems, to fully understand the potentially far‐reaching consequences of aphid endosymbionts on community and ecosystem processes.  相似文献   

12.
The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the alpha subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation.  相似文献   

13.
The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal-bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000-20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation.  相似文献   

14.
The 16S rRNAs from the bacterial endosymbionts of six marine invertebrates from diverse environments were isolated and partially sequenced. These symbionts included the trophosome symbiont of Riftia pachyptila, the gill symbionts of Calyptogena magnifica and Bathymodiolus thermophilus (from deep-sea hydrothermal vents), and the gill symbionts of Lucinoma annulata, Lucinoma aequizonata, and Codakia orbicularis (from relatively shallow coastal environments). Only one type of bacterial 16S rRNA was detected in each symbiosis. Using nucleotide sequence comparisons, we showed that each of the bacterial symbionts is distinct from the others and that all fall within a limited domain of the gamma subdivision of the purple bacteria (one of the major eubacterial divisions previously defined by 16S rRNA analysis [C. R. Woese, Microbiol. Rev. 51: 221-271, 1987]). Two host specimens were analyzed in five of the symbioses; in each case, identical bacterial rRNA sequences were obtained from conspecific host specimens. These data indicate that the symbioses examined are species specific and that the symbiont species are unique to and invariant within their respective host species.  相似文献   

15.
Species of Isorropodon are vesicomyid bivalves for which little information is available regarding host phylogeny and bacterial symbioses. In this study we investigated the symbioses in three Isorropodon species from three cold seep areas: Isorropodon bigoti (Gulf of Guinea), Isorropodon megadesmus (Gulf of Cadiz) and Isorropodon perplexum (Eastern Mediterranean). Analysis of bacterial 16S ribosomal RNA gene sequences demonstrated that each vesicomyid species harbours a single symbiont phylotype, that symbionts from the three species cluster together, and that they are closely related to other known vesicomyid symbionts. These results are confirmed by other marker genes (encoding 23S rRNA and APS reductase) and by fluorescence in situ hybridization. Due to their extended depth range and transoceanic distribution Isorropodon species are interesting examples to further study evolutionary processes in bivalve hosts and their associated symbionts.  相似文献   

16.
Symbiotic bacteria of the genus Verminephrobacter (Betaproteobacteria) were detected in the nephridia of 19 out of 23 investigated earthworm species (Oligochaeta: Lumbricidae) by 16S rRNA gene sequence analysis and fluorescence in situ hybridization (FISH). While all four Lumbricus species and three out of five Aporrectodea species were densely colonized by a mono-species culture of Verminephrobacter, other earthworm species contained mixed bacterial populations with varying proportions of Verminephrobacter; four species did not contain Verminephrobacter at all. The Verminephrobacter symbionts could be grouped into earthworm species-specific sequence clusters based on their 16S rRNA and RNA polymerase subunit B (rpoB) genes. Closely related host species harboured more closely related symbionts than did distantly related hosts. Co-diversification of the symbiotic partners could not be demonstrated unambiguously due to the poor resolution of the host phylogeny [based on histone H3 and cytochrome c oxidase subunit I (COI) gene sequence analyses]. However, there was a pattern of symbiont diversification within four groups of closely related hosts. The mean rate of symbiont 16S rRNA gene evolution was determined using a relaxed clock model, and the rate was calibrated with paleogeographical estimates of the time of origin of Lumbricid earthworms. The calibrated rates of symbiont 16S rRNA gene evolution are 0.012-0.026 substitutions per site per 50 million years and thus similar to rates reported from other symbiotic bacteria.  相似文献   

17.
Erwin PM  Thacker RW 《Molecular ecology》2008,17(12):2937-2947
Cyanobacteria are common members of sponge-associated bacterial communities and are particularly abundant symbionts of coral reef sponges. The unicellular cyanobacterium Synechococcus spongiarum is the most prevalent photosynthetic symbiont in marine sponges and inhabits taxonomically diverse hosts from tropical and temperate reefs worldwide. Despite the global distribution of S. spongiarum , molecular analyses report low levels of genetic divergence among 16S ribosomal RNA (rRNA) gene sequences from diverse sponge hosts, resulting either from the widespread dispersal ability of these symbionts or the low phylogenetic resolution of a conserved molecular marker. Partial 16S rRNA and entire 16S–23S rRNA internal transcribed spacer (ITS) genes were sequenced from cyanobacteria inhabiting 32 sponges (representing 18 species, six families and four orders) from six geographical regions. ITS phylogenies revealed 12 distinct clades of S. spongiarum that displayed 9% mean sequence divergence among clades and less than 1% sequence divergence within clades. Symbiont clades ranged in specificity from generalists to specialists, with most (10 of 12) clades detected in one or several closely related hosts. Although multiple symbiont clades inhabited some host sponges, symbiont communities appear to be structured by both geography and host phylogeny. In contrast, 16S rRNA sequences were highly conserved, exhibiting less than 1% sequence divergence among symbiont clades. ITS gene sequences displayed much higher variability than 16S rRNA sequences, highlighting the utility of ITS sequences in determining the genetic diversity and host specificity of S. spongiarum populations among reef sponges. The genetic diversity of S. spongiarum revealed by ITS sequences may be correlated with different physiological capabilities and environmental preferences that may generate variable host–symbiont interactions.  相似文献   

18.
Squids from the genus Euprymna (Cephalopoda: Sepiolidae) and their symbiotic bacteria Vibrio fischeri form a mutualism in which vibrios inhabit a complex light organ within the squid host. A host-mediated daily expulsion event seeds surrounding seawater with symbiotically capable V. fischeri that environmentally colonize newly hatched axenic Euprymna juveniles. Competition experiments using native and non-native Vibrio have shown that this expulsion/re-colonization phenomenon has led to cospeciation in this system in the Pacific Ocean; however, the genetic architecture of these symbiotic populations has not been determined. Using genetic diversity and nested clade analyses we have examined the variation and history of three allopatric Euprymna squid species (E. scolopes of Hawaii, E. hyllebergi of Thailand, and E. tasmanica from Australia) and their respective Vibrio symbionts. Euprymna populations appear to be very genetically distinct from each other, exhibiting little or no migration over large geographical distances. In contrast, Vibrio symbiont populations contain more diverse haplotypes, suggesting both host presence and unidentified factors facilitating long-distance migration structure in Pacific Vibrio populations. Findings from this study highlight the importance of how interactions between symbiotic organisms can unexpectedly shape population structure in phylogeographical studies.  相似文献   

19.
Bacterial symbionts are widespread in insects and other animals. Most of them are predominantly vertically transmitted, along with their hosts' genes, and thus extend the heritable genetic variation present in one species. These passengers have a variety of repercussions on the host's phenotypes: besides the cost imposed on the host for maintaining the symbiont population, they can provide fitness advantages to the host or manipulate the host's reproduction. We argue that insect symbioses are ideal model systems for community genetics. First, bacterial symbionts directly or indirectly affect the interactions with other species within a community. Examples include their involvement in modifying the use of host plants by phytophagous insects, in providing resistance to natural enemies, but also in reducing the global genetic diversity or gene flow between populations within some species. Second, one emerging picture in insect symbioses is that many species are simultaneously infected with more than one symbiont, which permits studying the factors that shape bacterial communities; for example, horizontal transmission, interactions between host genotype, symbiont genotype and the environment and interactions among symbionts. One conclusion is that insects' symbiotic complements are dynamic communities that affect and are affected by the communities in which they are embedded.  相似文献   

20.
Insect bacterial symbionts are ubiquitous, however, only a few groups of host families have been well studied in relation to their associations with microbes. The determination of the phylogenetic relationships among bacteria associated with different species within an insect family can provide insights into the biology and evolution of these interactions. We studied the phylogenetic placement of vertically transmitted bacterial symbionts associated with the posterior midgut (crypt-bearing) region of pentatomid stink bugs (Hemiptera, Pentatomidae). Our results demonstrate that different host species carried one major bacterium in their midgut. Phylogenetic analyses of the 16S rRNA gene sequences obtained from the midgut of stink bugs placed all symbionts in a clade with Erwinia and Pantoea species, both plant-associated bacteria. Results indicate that symbiont monophyly occurs among recently diverged taxa (e.g., within a genus) but does not occur in the Pentatomidae. Results suggest that these vertically transmitted symbionts are occasionally replaced by other taxonomically similar bacteria over evolutionary time. Our findings highlight how the evolutionary history of hemipteran symbionts in unexplored host families may have unpredictable levels of complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号